cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A332820 Integers in the multiplicative subgroup of positive rationals generated by the products of two consecutive primes and the cubes of primes. Numbers k for which A048675(k) is a multiple of three.

Original entry on oeis.org

1, 6, 8, 14, 15, 20, 26, 27, 33, 35, 36, 38, 44, 48, 50, 51, 58, 63, 64, 65, 68, 69, 74, 77, 84, 86, 90, 92, 93, 95, 106, 110, 112, 117, 119, 120, 122, 123, 124, 125, 141, 142, 143, 145, 147, 156, 158, 160, 161, 162, 164, 170, 171, 177, 178, 185, 188, 196, 198, 201, 202, 208, 209, 210, 214, 215, 216, 217, 219, 221, 225
Offset: 1

Views

Author

Antti Karttunen and Peter Munn, Feb 25 2020

Keywords

Comments

The positive integers are partitioned between this sequence, A332821 and A332822, which list the integers in respective cosets of the subgroup.
As the sequence lists the integers in a multiplicative subgroup of the positive rationals, the sequence is closed under multiplication and, provided the result is an integer, under division.
It follows that for any n in this sequence, all powers n^k are present (k >= 0), as are all cubes.
If we take each odd term of this sequence and replace each prime in its factorization by the next smaller prime, the resulting numbers are a permutation of the full sequence; and if we take the square root of each square term we get the full sequence.
There are no primes in the sequence, therefore if k is present and p is a prime, k*p and k/p are absent (noting that k/p might not be an integer). This property extends from primes to all terms of A050376 (often called Fermi-Dirac primes), therefore to squares of primes, 4th powers of primes etc.
The terms are the even numbers in A332821 halved. The terms are also the numbers m such that 5m is in A332821, and so on for alternate primes: 11, 17, 23 etc. Likewise, the terms are the numbers m such that 3m is in A332822, and so on for alternate primes: 7, 13, 19 etc.
The numbers that are half of the even terms of this sequence are in A332822, which consists exactly of those numbers. The numbers that are one third of the terms that are multiples of 3 are in A332821, which consists exactly of those numbers. These properties extend in a pattern of alternating primes as described in the previous paragraph.
If k is an even number, exactly one of {k/2, k, 2k} is in the sequence (cf. A191257 / A067368 / A213258); and generally if k is a multiple of a prime p, exactly one of {k/p, k, k*p} is in the sequence.
If m and n are in this sequence then so is m*n (the definition of "multiplicative semigroup"), while if n is in this sequence, and x is in the complement A359830, then n*x is in A359830. This essentially follows from the fact that A048675 is totally additive sequence. Compare to A329609. - Antti Karttunen, Jan 17 2023

Crossrefs

Positions of zeros in A332823; equivalently, numbers in row 3k of A277905 for some k >= 0.
Cf. A048675, A195017, A332821, A332822, A353350 (characteristic function), A353348 (its Dirichlet inverse), A359830 (complement).
Subsequences: A000578\{0}, A006094, A090090, A099788, A245630 (A191002 in ascending order), A244726\{0}, A325698, A338471, A338556, A338907.
Subsequence of {1} U A268388.

Programs

  • Mathematica
    Select[Range@ 225, Or[Mod[Total@ #, 3] == 0 &@ Map[#[[-1]]*2^(PrimePi@ #[[1]] - 1) &, FactorInteger[#]], # == 1] &] (* Michael De Vlieger, Mar 15 2020 *)
  • PARI
    isA332820(n) =  { my(f = factor(n)); !((sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2)%3); };

Formula

{a(n) : n >= 1} = {1} U {2 * A332822(k) : k >= 1} U {A003961(a(k)) : k >= 1}.
{a(n) : n >= 1} = {1} U {a(k)^2 : k >= 1} U {A331590(2, A332822(k)) : k >= 1}.
From Peter Munn, Mar 17 2021: (Start)
{a(n) : n >= 1} = {k : k >= 1, 3|A048675(k)}.
{a(n) : n >= 1} = {k : k >= 1, 3|A195017(k)}.
{a(n) : n >= 1} = {A332821(k)/2 : k >= 1, 2|A332821(k)}.
{a(n) : n >= 1} = {A332822(k)/3 : k >= 1, 3|A332822(k)}.
(End)

Extensions

New name from Peter Munn, Mar 08 2021

A332823 A 3-way classification indicator generated by the products of two consecutive primes and the cubes of primes. a(n) is -1, 0, or 1 such that a(n) == A048675(n) (mod 3).

Original entry on oeis.org

0, 1, -1, -1, 1, 0, -1, 0, 1, -1, 1, 1, -1, 0, 0, 1, 1, -1, -1, 0, 1, -1, 1, -1, -1, 0, 0, 1, -1, 1, 1, -1, 0, -1, 0, 0, -1, 0, 1, 1, 1, -1, -1, 0, -1, -1, 1, 0, 1, 0, 0, 1, -1, 1, -1, -1, 1, 0, 1, -1, -1, -1, 0, 0, 0, 1, 1, 0, 0, 1, -1, 1, 1, 0, 1, 1, 0, -1, -1, -1, -1, -1, 1, 0, -1, 0, 1, 1, -1, 0
Offset: 1

Views

Author

Antti Karttunen and Peter Munn, Feb 25 2020

Keywords

Comments

Completely additive modulo 3.
The equivalent sequence modulo 2 is A096268 (with offset 1), which produces the {A003159, A036554} classification.
Let H be the multiplicative subgroup of the positive rational numbers generated by the products of two consecutive primes and the cubes of primes. a(n) indicates the coset of H containing n. a(n) = 0 if n is in H. a(n) = 1 if n is in 2H. a(n) = -1 if n is in (1/2)H.
The properties of this classification can usefully be compared to two well-studied classifications. With the {A026424, A028260} classes, multiplying a member of one class by a prime gives a member of the other class. With the {A000028, A000379} classes, adding a factor to the Fermi-Dirac factorization of a member of one class gives a member of the other class. So, if 4 is not a Fermi-Dirac factor of k, k and 4k will be in different classes of the {A000028, A000379} set; but k and 4k will be in the same class of the {A026424, A028260} set. For two numbers to necessarily be in different classes when they differ in either of the 2 ways described above, 3 classes are needed.
With the classes defined by this sequence, no two of k, 2k and 4k are in the same class. This is a consequence of the following stronger property: if k is any positive integer and m is a member of A050376 (often called Fermi-Dirac primes), then no two of k, k * m, k * m^2 are in the same class. Also, if p and q are consecutive primes, then k * p and k * q are in different classes.
Further properties are given in the sequences that list the classes: A332820, A332821, A332822.
The scaled imaginary part of the Eisenstein integer-valued function, f, defined in A353445. - Peter Munn, Apr 27 2022

Crossrefs

Cf. A332813 (0,1,2 version of this sequence), A353350.
Cf. A353354 (inverse Möbius transform, gives another 3-way classification indicator function).
Cf. A332820, A332821, A332822 for positions of 0's, 1's and -1's in this sequence; also A003159, A036554 for the modulo 2 equivalents.
Comparable functions: A008836, A064179, A096268, A332814.
A000035, A003961, A028234, A055396, A067029, A097248, A225546, A297845, A331590 are used to express relationship between terms of this sequence.
The formula section also details how the sequence maps the terms of A000040, A332461, A332462.

Programs

  • PARI
    A332823(n) = { my(f = factor(n),u=(sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2)%3); if(2==u,-1,u); };

Formula

a(n) = A102283(A048675(n)) = -1 + (1 + A048675(n)) mod 3.
a(1) = 0; for n > 1, a(n) = A102283[(A067029(n) * (2-(A000035(A055396(n))))) + a(A028234(n))].
For all n >= 1, k >= 1: (Start)
a(n * k) == a(n) + a(k) (mod 3).
a(A331590(n,k)) == a(n) + a(k) (mod 3).
a(n^2) = -a(n).
a(A003961(n)) = -a(n).
a(A297845(n,k)) = a(n) * a(k).
(End)
For all n >= 1: (Start)
a(A000040(n)) = (-1)^(n-1).
a(A225546(n)) = a(n).
a(A097248(n)) = a(n).
a(A332461(n)) = a(A332462(n)) = A332814(n).
(End)
a(n) = A332814(A332462(n)). [Compare to the formula above. For a proof, see A353350.] - Antti Karttunen, Apr 16 2022

A339003 Numbers of the form prime(x) * prime(y) where x and y are distinct and both odd.

Original entry on oeis.org

10, 22, 34, 46, 55, 62, 82, 85, 94, 115, 118, 134, 146, 155, 166, 187, 194, 205, 206, 218, 235, 253, 254, 274, 295, 298, 314, 334, 335, 341, 358, 365, 382, 391, 394, 415, 422, 451, 454, 466, 482, 485, 514, 515, 517, 527, 538, 545, 554, 566, 614, 626, 635, 649
Offset: 1

Views

Author

Gus Wiseman, Nov 21 2020

Keywords

Comments

The squarefree semiprimes in A332822. - Peter Munn, Dec 25 2020

Examples

			The sequence of terms together with their prime indices begins:
     10: {1,3}     187: {5,7}     358: {1,41}    527: {7,11}
     22: {1,5}     194: {1,25}    365: {3,21}    538: {1,57}
     34: {1,7}     205: {3,13}    382: {1,43}    545: {3,29}
     46: {1,9}     206: {1,27}    391: {7,9}     554: {1,59}
     55: {3,5}     218: {1,29}    394: {1,45}    566: {1,61}
     62: {1,11}    235: {3,15}    415: {3,23}    614: {1,63}
     82: {1,13}    253: {5,9}     422: {1,47}    626: {1,65}
     85: {3,7}     254: {1,31}    451: {5,13}    635: {3,31}
     94: {1,15}    274: {1,33}    454: {1,49}    649: {5,17}
    115: {3,9}     295: {3,17}    466: {1,51}    662: {1,67}
    118: {1,17}    298: {1,35}    482: {1,53}    685: {3,33}
    134: {1,19}    314: {1,37}    485: {3,25}    694: {1,69}
    146: {1,21}    334: {1,39}    514: {1,55}    697: {7,13}
    155: {3,11}    335: {3,19}    515: {3,27}    706: {1,71}
    166: {1,23}    341: {5,11}    517: {5,15}    713: {9,11}
		

Crossrefs

A338910 is the not necessarily squarefree version.
A339004 is the even instead of odd version.
A001358 lists semiprimes, with odd and even terms A046315 and A100484.
A005117 lists squarefree numbers.
A006881 lists squarefree semiprimes, with odd and even terms A046388 and A100484.
A289182/A115392 list the positions of odd/even terms of A001358.
A300912 lists products of two primes of relatively prime index.
A320656 counts factorizations into squarefree semiprimes.
A338898, A338912, and A338913 give the prime indices of semiprimes, with product A087794, sum A176504, and difference A176506.
A338899, A270650, and A270652 give the prime indices of squarefree semiprimes, with difference A338900.
A338904 groups semiprimes by weight.
A338906/A338907 list semiprimes of even/odd weight.
A339002 lists products of two distinct primes of non-relatively prime index.
A339005 lists products of two distinct primes of divisible index.
Subsequence of A332822.

Programs

  • Mathematica
    Select[Range[100],SquareFreeQ[#]&&PrimeOmega[#]==2&&OddQ[Times@@PrimePi/@First/@FactorInteger[#]]&]
  • Python
    from math import isqrt
    from sympy import primepi, primerange
    def A339003(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(primepi(x//p)-a>>1 for a,p in enumerate(primerange(isqrt(x)+1),1) if a&1)
        return bisection(f,n,n) # Chai Wah Wu, Apr 03 2025

Formula

Numbers m such that A001221(m) = A001222(m) = A195017(m) = 2. - Peter Munn, Dec 31 2020

A334747 Let p be the smallest prime not dividing the squarefree part of n. Multiply n by p and divide by the product of all smaller primes.

Original entry on oeis.org

2, 3, 6, 8, 10, 5, 14, 12, 18, 15, 22, 24, 26, 21, 30, 32, 34, 27, 38, 40, 42, 33, 46, 20, 50, 39, 54, 56, 58, 7, 62, 48, 66, 51, 70, 72, 74, 57, 78, 60, 82, 35, 86, 88, 90, 69, 94, 96, 98, 75, 102, 104, 106, 45, 110, 84, 114, 87, 118, 120, 122, 93, 126, 128, 130, 55
Offset: 1

Views

Author

Peter Munn, May 09 2020

Keywords

Comments

A bijection from the positive integers to the nonsquares, A000037.
A003159 (which has asymptotic density 2/3) lists index n such that a(n) = 2n. The sequence maps the terms of A003159 1:1 onto A036554, defining a bijection between them.
Similarly, bijections are defined from A007417 to A325424, from A325424 to A145204\{0}, and from the first in each of the following pairs to the nonsquare integers in the second: (A145204\{0}, A036668), (A036668, A007417), (A036554, A003159), (A332820, A332821), (A332821, A332822), (A332822, A332820). Note that many of these are between sets where membership depends on whether a number's squarefree part divides by 2 and/or 3.
Starting from 1, and iterating the sequence as a(1) = 2, a(2) = 3, a(3) = 6, a(6) = 5, a(5) = 10, etc., runs through the squarefree numbers in the order they appear in A019565. - Antti Karttunen, Jun 08 2020

Examples

			168 = 42*4 has squarefree part 42 (and square part 4). The smallest prime absent from 42 = 2*3*7 is 5 and the product of all smaller primes is 2*3 = 6. So a(168) = 168*5/6 = 140.
		

Crossrefs

Permutation of A000037.
Row 2, and therefore column 2, of A331590. Cf. A334748 (row 3).
A007913, A034386, A053669, A225546 are used in formulas defining the sequence.
The formula section details how the sequence maps the terms of A002110, A003961, A019565; and how f(a(n)) relates to f(n) for f = A008833, A048675, A267116; making use of A003986.
Subsequences: A016825 (odd bisection), A036554, A329575.
Bijections are defined that relate to A003159, A007417, A036668, A145204, A325424, A332820, A332821, A332822.
Cf. also binary trees A334860, A334866 and A334870 (a left inverse).

Programs

  • PARI
    a(n) = {my(c=core(n), m=n); forprime(p=2, , if(c % p, m*=p; break, m/=p)); m;} \\ Michel Marcus, May 22 2020

Formula

a(n) = n * m / A034386(m-1), where m = A053669(A007913(n)).
a(n) = A331590(2, n) = A225546(2 * A225546(n)).
a(A019565(n)) = A019565(n+1).
a(k * m^2) = a(k) * m^2.
a(A003961(n)) = 2 * A003961(n).
a(2 * A003961(n)) = A003961(a(n)).
a(A002110(n)) = prime(n+1).
A048675(a(n)) = A048675(n) + 1.
A008833(a(n)) = A008833(n).
A267116(a(n)) = A267116(n) OR 1, where OR denotes the bitwise operation A003986.
a(A003159(n)) = A036554(n) = 2 * A003159(n).
A334870(a(n)) = n. - Antti Karttunen, Jun 08 2020

A332821 One part of a 3-way classification of the positive integers. Numbers n for which A048675(n) == 1 (mod 3).

Original entry on oeis.org

2, 5, 9, 11, 12, 16, 17, 21, 23, 28, 30, 31, 39, 40, 41, 47, 49, 52, 54, 57, 59, 66, 67, 70, 72, 73, 75, 76, 83, 87, 88, 91, 96, 97, 100, 102, 103, 109, 111, 116, 126, 127, 128, 129, 130, 133, 135, 136, 137, 138, 148, 149, 154, 157, 159, 165, 167, 168, 169, 172, 175, 179, 180, 183, 184, 186, 190, 191, 197, 203, 211, 212
Offset: 1

Views

Author

Antti Karttunen and Peter Munn, Feb 25 2020

Keywords

Comments

The positive integers are partitioned between A332820, this sequence and A332822.
For each prime p, the terms include exactly one of p and p^2. The primes alternate between this sequence and A332822. This sequence has the primes with odd indexes, those in A031368.
The terms are the even numbers in A332822 halved. The terms are also the numbers m such that 5m is in A332822, and so on for alternate primes: 11, 17, 23 etc. Likewise, the terms are the numbers m such that 3m is in A332820, and so on for alternate primes: 7, 13, 19 etc.
The numbers that are half of the even terms of this sequence are in A332820, which consists exactly of those numbers. The numbers that are one third of the terms that are multiples of 3 are in A332822, which consists exactly of those numbers. For larger primes, an alternating pattern applies as described in the previous paragraph.
If we take each odd term of this sequence and replace each prime in its factorization by the next smaller prime, the resulting number is in A332822, which consists entirely of those numbers.
The product of any 2 terms of this sequence is in A332822, the product of any 3 terms is in A332820, and the product of a term of A332820 and a term of this sequence is in this sequence. So if a number k is present, k^2 is in A332822, k^3 is in A332820, and k^4 is in this sequence.
If k is an even number, exactly one of {k/2, k, 2k} is in the sequence (cf. A191257 / A067368 / A213258); and generally if k is a multiple of a prime p, exactly one of {k/p, k, k*p} is in the sequence.

Crossrefs

Positions of ones in A332823; equivalently, numbers in row 3k+1 of A277905 for some k >= 0.
Subsequences: intersection of A026478 and A066208, A031368 (prime terms), A033431\{0}, A052934\{1}, A069486, A099800, A167747\{1}, A244725\{0}, A244728\{0}, A338911 (semiprime terms).

Programs

  • Mathematica
    Select[Range@ 212, Mod[Total@ #, 3] == 1 &@ Map[#[[-1]]*2^(PrimePi@ #[[1]] - 1) &, FactorInteger[#]] &] (* Michael De Vlieger, Mar 15 2020 *)
  • PARI
    isA332821(n) =  { my(f = factor(n)); (1==((sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2)%3)); };

Formula

{a(n) : n >= 1} = {2 * A332820(k) : k >= 1} U {A003961(A332822(k)) : k >= 1}.
{a(n) : n >= 1} = {A332822(k)^2 : k >= 1} U {A331590(2, A332820(k)) : k >= 1}.

A332812 Numbers n for which A156552(n) == 2 (mod 3).

Original entry on oeis.org

3, 6, 7, 12, 13, 14, 19, 24, 26, 27, 28, 29, 35, 37, 38, 43, 48, 52, 53, 54, 56, 58, 61, 63, 65, 70, 71, 74, 75, 76, 79, 86, 89, 95, 96, 101, 104, 106, 107, 108, 112, 113, 116, 117, 122, 126, 130, 131, 139, 140, 142, 143, 145, 147, 148, 150, 151, 152, 158, 163, 165, 171, 172, 173, 175, 178, 181, 185, 190, 192, 193, 199, 202
Offset: 1

Views

Author

Antti Karttunen, Feb 27 2020

Keywords

Comments

Contains neither squares nor twice squares.

Crossrefs

Positions of 2's in A329903, of -1's in A332814.
Cf. A031215 (a subsequence of prime terms).
Cf. also A332822.

Programs

  • PARI
    A156552(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552
    isA332812(n) = (2==(A156552(n)%3));

A332813 a(n) = A048675(n) mod 3.

Original entry on oeis.org

0, 1, 2, 2, 1, 0, 2, 0, 1, 2, 1, 1, 2, 0, 0, 1, 1, 2, 2, 0, 1, 2, 1, 2, 2, 0, 0, 1, 2, 1, 1, 2, 0, 2, 0, 0, 2, 0, 1, 1, 1, 2, 2, 0, 2, 2, 1, 0, 1, 0, 0, 1, 2, 1, 2, 2, 1, 0, 1, 2, 2, 2, 0, 0, 0, 1, 1, 0, 0, 1, 2, 1, 1, 0, 1, 1, 0, 2, 2, 2, 2, 2, 1, 0, 2, 0, 1, 1, 2, 0, 1, 0, 0, 2, 0, 1, 1, 2, 2, 1, 2, 1, 1, 2, 2
Offset: 1

Views

Author

Antti Karttunen, Mar 01 2020

Keywords

Comments

Completely additive modulo 3.
See comments in A332823 which is 0,+1,-1 version of this sequence.

Crossrefs

Cf. A332823 (for 0,+1,-1 version of this sequence).
Cf. A332820, A332821, A332822 for positions of 0's, 1's and 2's in this sequence.
Cf. also A329903.

Programs

  • PARI
    A332813(n) = { my(f = factor(n)); (sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2)%3; };

Formula

a(n) = A010872(A048675(n)).
a(A332461(n)) = a(A332462(n)) = A329903(n).

A359830 Numbers k such that A048675(k) is not a multiple of 3.

Original entry on oeis.org

2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 16, 17, 18, 19, 21, 22, 23, 24, 25, 28, 29, 30, 31, 32, 34, 37, 39, 40, 41, 42, 43, 45, 46, 47, 49, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 66, 67, 70, 71, 72, 73, 75, 76, 78, 79, 80, 81, 82, 83, 85, 87, 88, 89, 91, 94, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 107, 108
Offset: 1

Views

Author

Antti Karttunen, Jan 17 2023

Keywords

Comments

Sequence is closed with respect to prime shifting: for any k present in the sequence, also A003961(k) and A348717(k) are present.

Crossrefs

Complement of A332820. Positions of 0's in A353350.
Union of A332821 and A332822.
Cf. A000040 (subsequence), A003961, A048675, A348717, A353348.

Programs

  • PARI
    A048675(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; };
    isA359830(n) = !!(A048675(n)%3);
    
  • Python
    from itertools import count, islice
    from sympy import primepi, factorint
    def A359830_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n:sum(e<A359830_list = list(islice(A359830_gen(),20)) # Chai Wah Wu, Jan 17 2023
Showing 1-8 of 8 results.