A332935 Sum of ceiling(n^(3/2)) where d runs through the divisors of n.
1, 4, 7, 12, 13, 25, 20, 35, 34, 48, 38, 75, 48, 76, 78, 99, 72, 129, 84, 146, 123, 145, 112, 216, 138, 184, 175, 233, 158, 293, 174, 281, 234, 274, 240, 395, 227, 322, 298, 422, 264, 467, 283, 445, 407, 427, 324, 613, 363, 527, 443, 567, 387, 667, 458, 676
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Maple
a:= n-> add(ceil(d^(3/2)), d=numtheory[divisors](n)): seq(a(n), n=1..60); # Alois P. Heinz, Mar 02 2020
-
Mathematica
Table[DivisorSum[n,Ceiling[Sqrt[#^3]]&],{n,80}]
-
PARI
a(n)={sumdiv(n, d, 1 + sqrtint(d^3 - 1))} \\ Andrew Howroyd, Mar 02 2020
-
Python
from math import isqrt from sympy import divisors def A332935(n): return sum(1+isqrt(d**3-1) for d in divisors(n,generator=True)) # Chai Wah Wu, Aug 03 2022