A333243 Prime numbers with prime indices in A262275.
5, 31, 59, 179, 331, 431, 599, 709, 919, 1153, 1297, 1523, 1787, 1847, 2381, 2477, 2749, 3259, 3637, 3943, 4091, 4273, 4549, 5623, 5869, 6113, 6661, 6823, 7607, 7841, 8221, 8527, 8719, 9461, 9739, 9859, 11743, 11953, 12097, 12301, 12547, 13469, 13709, 14177
Offset: 1
Keywords
Examples
a(1) = prime(A262275(1)) = prime(3) = 5.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Michael P. May, On the Properties of Special Prime Number Subsequences, arXiv:1608.08082 [math.GM], 2016-2020.
- Michael P. May, Properties of Higher-Order Prime Number Sequences, Missouri J. Math. Sci. (2020) Vol. 32, No. 2, 158-170; and arXiv version, arXiv:2108.04662 [math.NT], 2021.
Programs
-
Maple
b:= proc(n) option remember; `if`(isprime(n), 1+b(numtheory[pi](n)), 0) end: a:= proc(n) option remember; local p; p:= `if`(n=1, 1, a(n-1)); do p:= nextprime(p); if (h-> h>1 and h::odd)(b(p)) then break fi od; p end: seq(a(n), n=1..50); # Alois P. Heinz, Mar 15 2020
-
Mathematica
b[n_] := b[n] = If[PrimeQ[n], 1+b[PrimePi[n]], 0]; a[n_] := a[n] = Module[{p}, p = If[n==1, 1, a[n-1]]; While[True, p = NextPrime[p]; If[#>1 && OddQ[#]&[b[p]], Break[]]]; p]; Array[a, 50] (* Jean-François Alcover, Nov 16 2020, after Alois P. Heinz *)
-
PARI
b(n)={my(k=0); while(isprime(n), k++; n=primepi(n)); k}; apply(x->prime(prime(x)), select(n->b(n)%2, [1..500])) \\ Michel Marcus, Nov 18 2022
Formula
a(n) = prime(A262275(n)).
Comments