cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A333244 Prime numbers with prime indices in A333243.

Original entry on oeis.org

11, 127, 277, 1063, 2221, 3001, 4397, 5381, 7193, 9319, 10631, 12763, 15299, 15823, 21179, 22093, 24859, 30133, 33967, 37217, 38833, 40819, 43651, 55351, 57943, 60647, 66851, 68639, 77431, 80071, 84347, 87803, 90023, 98519, 101701, 103069, 125113, 127643
Offset: 1

Views

Author

Michael P. May, Mar 12 2020

Keywords

Comments

This sequence can also be generated by the N-sieve.

Examples

			a(1) = prime(A333243(1)) = prime(5) = 11.
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember;
          `if`(isprime(n), 1+b(numtheory[pi](n)), 0)
        end:
    a:= proc(n) option remember; local p;
          p:= `if`(n=1, 1, a(n-1));
          do p:= nextprime(p);
            if (h-> h>2 and h::even)(b(p)) then break fi
          od; p
        end:
    seq(a(n), n=1..42);  # Alois P. Heinz, Mar 15 2020
  • Mathematica
    b[n_] := b[n] = If[PrimeQ[n], 1+b[PrimePi[n]], 0];
    a[n_] := a[n] = Module[{p}, p = If[n==1, 1, a[n-1]]; While[True, p = NextPrime[p]; If[#>2 && EvenQ[#]&[b[p]], Break[]]]; p];
    Array[a, 42] (* Jean-François Alcover, Nov 16 2020, after Alois P. Heinz *)
  • PARI
    b(n)={my(k=0); while(isprime(n), k++; n=primepi(n)); k};
    apply(x->prime(prime(prime(x))), select(n->b(n)%2, [1..500])) \\ Michel Marcus, Nov 18 2022

Formula

a(n) = prime(A333243(n)).

A333242 Prime numbers with an odd number of steps in their prime index chain.

Original entry on oeis.org

2, 5, 7, 13, 19, 23, 29, 31, 37, 43, 47, 53, 59, 61, 71, 73, 79, 89, 97, 101, 103, 107, 113, 131, 137, 139, 149, 151, 163, 167, 173, 179, 181, 193, 197, 199, 223, 227, 229, 233, 239, 251, 257, 263, 269, 271, 281, 293, 307, 311, 313, 317, 331, 337, 347, 349, 359, 373
Offset: 1

Views

Author

Michael P. May, Mar 12 2020

Keywords

Comments

This sequence can also be generated by the N-sieve.

Crossrefs

Cf. A000040, A000720, A078442, A262275 (complement in primes), A333243, A333244.

Programs

  • Maple
    b:= proc(n) option remember;
           `if`(isprime(n), 1+b(numtheory[pi](n)), 0)
        end:
    a:= proc(n) option remember; local p; p:= a(n-1);
          do p:= nextprime(p);
             if b(p)::odd then break fi
          od; p
        end: a(1):=2:
    seq(a(n), n=1..60);  # Alois P. Heinz, Mar 15 2020
  • Mathematica
    Select[Prime@ Range@ 75, EvenQ@ Length@ NestWhileList[ PrimePi, #, PrimeQ] &] (* Giovanni Resta, Mar 15 2020 *)
  • PARI
    \\ here b(n) is A078442.
    b(n)={my(k=0); while(isprime(n), k++; n=primepi(n)); k}
    select(n->b(n)%2, [1..500]) \\ Andrew Howroyd, Mar 15 2020

Formula

{ p in primes : A078442(p) mod 2 = 1 }.
a(n) = A000720(A262275(n)). - Andrew Howroyd, Mar 15 2020

Extensions

Terms a(21) and beyond from Andrew Howroyd, Mar 15 2020

A338460 Decimal expansion of the largest real root of e^(x-1) = Gamma(x+1).

Original entry on oeis.org

3, 6, 1, 4, 7, 9, 3, 7, 0, 3, 1, 9, 2, 5, 2, 5, 4, 4, 7, 3, 8, 6, 5, 3, 6, 6, 2, 5, 6, 0, 3, 4, 5, 4, 6, 3, 3, 5, 3, 1, 5, 1, 6, 5, 9, 6, 9, 4, 7, 5, 0, 2, 2, 6, 6, 1, 1, 1, 5, 9, 9, 9, 7, 7, 4, 6, 2, 5, 1, 8, 2, 9, 8, 6, 1, 3, 6, 1, 8, 5, 7, 5, 4, 3, 2, 8, 1, 8, 6, 2, 8, 2, 1, 5, 7, 1, 1, 5, 9, 6, 3, 3, 0, 8, 1
Offset: 1

Views

Author

Michael P. May, Jan 31 2021

Keywords

Comments

Decimal expansion of the constant value for which the average and the minimum prime gaps are equal for the prime number sequences of higher order P', P'', P''', and P'''' as represented by A333242, A262275, A333243 and A333244.
x-1 is the smallest average gap size for the set of all prime numbers P. - Michael P. May, Jan 26 2025

Examples

			3.61479370319252544738653662560345463353151659694750...
		

Crossrefs

Programs

  • Maple
    Digits:= 155:
    fsolve(exp(x-1)=GAMMA(x+1), x=3..4);  # Alois P. Heinz, Feb 01 2021
  • Mathematica
    RealDigits[x /. FindRoot[LogGamma[x + 1] - x + 1, {x, 3}, WorkingPrecision -> 110], 10, 105][[1]] (* Amiram Eldar, Feb 01 2021 *)
  • PARI
    solve(x=3,4,lngamma(x+1)-x+1) \\ Hugo Pfoertner, Feb 01 2021

Formula

x| (log(x!))^n * (log(x!) + 1) = x * (x-1)^n, for n >= 0

A358179 Prime numbers with prime indices in A333244.

Original entry on oeis.org

31, 709, 1787, 8527, 19577, 27457, 42043, 52711, 72727, 96797, 112129, 137077, 167449, 173867, 239489, 250751, 285191, 352007, 401519, 443419, 464939, 490643, 527623, 683873, 718807, 755387, 839483, 864013, 985151, 1021271, 1080923, 1128889, 1159901, 1278779, 1323503, 1342907, 1656649, 1693031
Offset: 1

Views

Author

Michael P. May, Nov 11 2022

Keywords

Comments

This sequence can also be generated by the N-sieve.

Examples

			a(1) = prime(A333244(1)) = prime(11) = 31.
		

Crossrefs

Programs

  • Mathematica
    b[n_] := b[n] = If[PrimeQ[n], 1+b[PrimePi[n]], 0];
    a[n_] := a[n] = Module[{p}, p = If[n==1, 1, a[n-1]]; While[True, p = NextPrime[p]; If[#>3 && OddQ[#]&[b[p]], Break[]]]; p];
    Array[a, 50]
  • PARI
    b(n)={my(k=0); while(isprime(n), k++; n=primepi(n)); k};
    apply(x->prime(prime(prime(prime(x)))), select(n->b(n)%2, [1..500])) \\ Michel Marcus, Nov 18 2022

Formula

a(n) = prime(A333244(n)).
a(n) = A049090(A333242(n)).
a(n) = A038580(A262275(n)).
a(n) = A006450(A333243(n)).
Showing 1-4 of 4 results.