A333395 Total length of all longest runs of 1's in multus bitstrings of length n.
0, 2, 7, 16, 32, 62, 118, 221, 409, 751, 1371, 2492, 4513, 8148, 14674, 26371, 47304, 84717, 151508, 270622, 482849, 860661, 1532745, 2727483, 4849988, 8618549, 15306204, 27168300, 48199022, 85469639, 151495120, 268418323, 475405955, 841718780, 1489804565, 2636091495
Offset: 1
Keywords
Examples
a(4) = 16 because the seven multus bitstrings of length 4 are 0000, 1100, 0110, 0011, 1110, 0111, 1111 and the longest 1-runs contribute 0+2+2+2+3+3+4 = 16.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..985
- Steven Finch, Cantor-solus and Cantor-multus distributions, arXiv:2003.09458 [math.CO], 2020.
Programs
-
Mathematica
gf[n_] := x/((x - 1) (1 - x + x^2)) + Sum[((x - 1) x^k)/((x^3 - x^2 + 2 x - 1) (x^(k + 1) - x^3 + x^2 - 2 x + 1)), {k, 1, n}]; ser[n_] := Series[gf[n], {x, 0, n}]; Drop[CoefficientList[ser[36], x], 1] (* Peter Luschny, Mar 19 2020 *)
Formula
G.f.: -x/((1-x)*(1-x+x^2)) + x*Sum_{k>=1} (1+x^2)/(1-2*x+x^2-x^3) - (1+x^2-x^(k-1)-x^k)/(1-2*x+x^2-x^3+x^(k+1)).
Comments