A333394 Total length of all longest runs of 0's in solus bitstrings of length n.
0, 1, 4, 9, 18, 34, 62, 110, 192, 331, 565, 958, 1615, 2710, 4531, 7552, 12554, 20823, 34472, 56972, 94020, 154959, 255102, 419532, 689312, 1131632, 1856382, 3043208, 4985674, 8163321, 13359207, 21851594, 35726470, 58386958, 95383471, 155766277, 254288786
Offset: 0
Keywords
Examples
a(4) = 18 because the A000045(6) = 8 solus bitstrings of length 4 are 0000, 1000, 0100, 0010, 0001, 1010, 0101, 1001 and the longest 0-runs contribute 4+3+2+2+3+1+1+2 = 18.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Steven Finch, Cantor-solus and Cantor-multus distributions, arXiv:2003.09458 [math.CO], 2020.
Programs
-
Maple
b:= proc(n, w, m, s) option remember; `if`(n=0, m, b(n-1, w+1, max(m, w+1), irem(s, 10)*10+0)+ `if`(s in [01, 21], 0, b(n-1, 0, m, irem(s, 10)*10+1))) end: a:= n-> b(n, 0, 0, 22): seq(a(n), n=0..39); # Alois P. Heinz, Mar 18 2020
-
Mathematica
b[n_, w_, m_, s_] := b[n, w, m, s] = If[n == 0, m, b[n-1, w+1, Max[m, w+1], Mod[s, 10]*10+0]+If[MatchQ[s, 01|21], 0, b[n-1, 0, m, Mod[s, 10]*10+1]]]; a[n_] := b[n, 0, 0, 22]; a /@ Range[0, 39] (* Jean-François Alcover, Aug 21 2020, after Alois P. Heinz *)
Formula
G.f.: Sum_{k>=1} (1+x)/(1-x-x^2)-(1+x-x^k-x^(k+1))/(1-x-x^2+x^(k+1)).
Comments