cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A136676 Numerator of Sum_{k=1..n} (-1)^(k+1)/k^5.

Original entry on oeis.org

1, 31, 7565, 241837, 755989457, 755889457, 12705011703799, 406547611705943, 98792790681344149, 98791774426324117, 15910615688635928566967, 15910549913780913466967, 5907492176026179821253778331
Offset: 1

Views

Author

Alexander Adamchuk, Jan 16 2008

Keywords

Comments

a(n) is prime for n in A136685.
Lim_{n -> infinity} a(n)/A334604(n) = A267316 = (15/16)*A013663. - Petros Hadjicostas, May 07 2020

Examples

			The first few fractions are 1, 31/32, 7565/7776, 241837/248832, 755989457/777600000, 755889457/777600000, ... = a(n)/A334604(n). - _Petros Hadjicostas_, May 07 2020
		

Crossrefs

Programs

  • Mathematica
    Table[ Numerator[ Sum[ (-1)^(k+1)/k^5, {k,1,n} ] ], {n,1,30} ]
  • PARI
    a(n) = numerator(sum(k=1, n, (-1)^(k+1)/k^5)); \\ Michel Marcus, May 07 2020

A267316 Decimal expansion of the Dirichlet eta function at 5.

Original entry on oeis.org

9, 7, 2, 1, 1, 9, 7, 7, 0, 4, 4, 6, 9, 0, 9, 3, 0, 5, 9, 3, 5, 6, 5, 5, 1, 4, 3, 5, 5, 3, 4, 6, 9, 5, 3, 2, 5, 5, 3, 5, 1, 3, 3, 6, 2, 0, 3, 3, 0, 4, 3, 2, 6, 1, 2, 2, 5, 8, 0, 5, 6, 3, 5, 5, 3, 4, 8, 1, 5, 8, 6, 5, 4, 2, 4, 6, 3, 8, 8, 9, 1, 7, 7, 5, 0, 4, 0, 4, 1, 2, 3, 9, 7, 3, 1, 2, 5, 0, 2, 8, 5, 5, 8, 9, 4, 0, 7, 0, 1, 2, 4, 8, 9, 6, 8, 2, 0, 9, 7, 7
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 13 2016

Keywords

Examples

			1/1^5 - 1/2^5 + 1/3^5 - 1/4^5 + 1/5^5 - 1/6^5 + ... = 0.972119770446909305935655143553469532553513362...
		

Crossrefs

Cf. A002162 (value at 1), A013663, A072691 (value at 2), A197070 (value at 3), A267315 (value at 4), A136676, A334604.

Programs

  • Mathematica
    RealDigits[(15 Zeta[5])/16, 10, 120][[1]]
  • PARI
    15*zeta(5)/16 \\ Michel Marcus, Feb 01 2016
    
  • Sage
    s = RLF(0); s
    RealField(110)(s)
    for i in range(1, 10000): s += -((-1)^i/((i)^5))
    print(s) # Terry D. Grant, Aug 05 2016

Formula

Equals Sum_{k > 0} (-1)^(k+1)/k^5 = (15*zeta(5))/16.
Equals Lim_{n -> infinity} A136676(n)/A334604(n). - Petros Hadjicostas, May 07 2020
Showing 1-2 of 2 results.