A334662 a(n) = Sum_{d|n} gcd(tau(d), pod(d)), where pod(k) is the product of the divisors of k (A007955).
1, 3, 2, 4, 2, 8, 2, 8, 5, 8, 2, 15, 2, 8, 4, 9, 2, 17, 2, 11, 4, 8, 2, 27, 3, 8, 6, 11, 2, 22, 2, 11, 4, 8, 4, 33, 2, 8, 4, 23, 2, 22, 2, 11, 10, 8, 2, 30, 3, 11, 4, 11, 2, 26, 4, 23, 4, 8, 2, 43, 2, 8, 10, 12, 4, 22, 2, 11, 4, 22, 2, 57, 2, 8, 8, 11, 4, 22
Offset: 1
Keywords
Examples
a(6) = gcd(tau(1), pod(1)) + gcd(tau(2), pod(2)) + gcd(tau(3), pod(3)) + gcd(tau(6), pod(6)) = gcd(1, 1) + gcd(2, 2) + gcd(2, 3) + gcd(4, 36) = 1 + 2 + 1 + 4 = 8.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Crossrefs
Programs
-
Magma
[&+[GCD(#Divisors(d), &*Divisors(d)): d in Divisors(n)]: n in [1..100]]
-
PARI
a(n) = sumdiv(n, d, gcd(numdiv(d), vecprod(divisors(d)))); \\ Michel Marcus, May 08 2020
Formula
a(p) = 2 for p = odd primes (A065091).
Comments