cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A334794 a(n) = Sum_{d|n} lcm(sigma(d), pod(d)) where sigma(k) is the sum of divisors of k (A000203) and pod(k) is the product of divisors of k (A007955).

Original entry on oeis.org

1, 7, 13, 63, 31, 55, 57, 1023, 364, 937, 133, 12207, 183, 1239, 1843, 32767, 307, 76222, 381, 168993, 14181, 4495, 553, 1672047, 3906, 14385, 29524, 23247, 871, 812785, 993, 2097151, 17569, 31525, 58887, 917158710, 1407, 22047, 85371, 23209953, 1723, 6238791
Offset: 1

Views

Author

Jaroslav Krizek, May 12 2020

Keywords

Examples

			a(6) = lcm(sigma(1), pod(1)) + lcm(sigma(2), pod(2)) + lcm(sigma(3), pod(3)) + lcm(sigma(6), pod(6)) = lcm(1, 1) + lcm(3, 2) + lcm(4, 3) + lcm(12, 36) = 1 + 6 + 12 + 36 = 55.
		

Crossrefs

Cf. A334663 (Sum_{d|n} gcd(sigma(d), pod(d))), A334793 (Sum_{d|n} lcm(tau(d), pod(d))).
Cf. A000203 (sigma(n)), A007955 (pod(n)), A324529 (lcm(sigma(n), pod(n))).

Programs

  • Magma
    [&+[LCM(&+Divisors(d), &*Divisors(d)): d in Divisors(n)]: n in [1..100]]
    
  • Mathematica
    a[n_] := DivisorSum[n, LCM[DivisorSigma[1, #], #^(DivisorSigma[0, #]/2)] &]; Array[a, 100] (* Amiram Eldar, May 12 2020 *)
  • PARI
    a(n) = sumdiv(n, d, lcm(sigma(d), vecprod(divisors(d)))); \\ Michel Marcus, May 12 2020

Formula

a(p) = p^2 + p + 1 for p = primes (A000040).

A334807 a(n) = Product_{d|n} lcm(tau(d), pod(d)) where tau(k) is the number of divisors of k (A000005) and pod(k) is the product of divisors of k (A007955).

Original entry on oeis.org

1, 2, 6, 48, 10, 432, 14, 3072, 162, 2000, 22, 17915904, 26, 5488, 54000, 15728640, 34, 68024448, 38, 1152000000, 148176, 21296, 46, 380420285792256, 3750, 35152, 472392, 8674025472, 58, 314928000000000, 62, 1546188226560, 574992, 78608, 686000
Offset: 1

Views

Author

Jaroslav Krizek, Jun 26 2020

Keywords

Examples

			a(6) = lcm(tau(1), pod(1)) * lcm(tau(2), pod(2)) * lcm(tau(3), pod(3)) * lcm(tau(6), pod(6)) = lcm(1, 1) * lcm(2, 2) * lcm(2, 3) * lcm(4, 36) = 1 * 2 * 6 * 36 = 432.
		

Crossrefs

Cf. A334793 (Sum_{d|n} lcm(tau(d), pod(d))), A334730 (Product_{d|n} gcd(tau(d), pod(d))).
Cf. A000005 (tau(n)), A007955 (pod(n)), A324528 (lcm(tau(n), pod(n))).

Programs

  • Magma
    [&*[LCM(#Divisors(d), &*Divisors(d)): d in Divisors(n)]: n in [1..100]];
    
  • Maple
    pod:= proc(n) option remember; convert(numtheory:-divisors(n),`*`) end proc:
    f:= proc(n) local d; mul(ilcm(numtheory:-tau(d), pod(d)),d=numtheory:-divisors(n)) end proc:
    map(f, [$1..50]); # Robert Israel, Jan 02 2025
  • Mathematica
    a[n_] := Product[LCM[DivisorSigma[0, d], Times @@ Divisors[d]], {d, Divisors[n]}]; Array[a, 35] (* Amiram Eldar, Jun 27 2020 *)
  • PARI
    a(n) = my(d=divisors(n)); prod(k=1, #d, lcm(numdiv(d[k]), vecprod(divisors(d[k])))); \\ Michel Marcus, Jun 27 2020

Formula

a(p) = 2p for p = odd primes (A065091).
Showing 1-2 of 2 results.