A334987 Sum of centered triangular numbers dividing n.
1, 1, 1, 5, 1, 1, 1, 5, 1, 11, 1, 5, 1, 1, 1, 5, 1, 1, 20, 15, 1, 1, 1, 5, 1, 1, 1, 5, 1, 11, 32, 5, 1, 1, 1, 5, 1, 20, 1, 15, 1, 1, 1, 5, 1, 47, 1, 5, 1, 11, 1, 5, 1, 1, 1, 5, 20, 1, 1, 15, 1, 32, 1, 69, 1, 1, 1, 5, 1, 11, 1, 5, 1, 1, 1, 24, 1, 1, 1, 15, 1, 1, 1, 5, 86, 1, 1, 5, 1, 11
Offset: 1
Keywords
Links
- Eric Weisstein's World of Mathematics, Centered Triangular Number
Programs
-
Mathematica
nmax = 90; CoefficientList[Series[Sum[(3 k (k - 1)/2 + 1) x^(3 k (k - 1)/2 + 1)/(1 - x^(3 k (k - 1)/2 + 1)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest nmax = 90; CoefficientList[Series[Log[Product[1/(1 - x^(3 k (k - 1)/2 + 1)), {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax] // Rest
-
PARI
isc(n) = my(k=(2*n-2)/3, m); (n==1) || ((denominator(k)==1) && (m=sqrtint(k)) && (m*(m+1)==k)); a(n) = sumdiv(n, d, if (isc(d), d)); \\ Michel Marcus, May 19 2020
Formula
G.f.: Sum_{k>=1} (3*k*(k - 1)/2 + 1) * x^(3*k*(k - 1)/2 + 1) / (1 - x^(3*k*(k - 1)/2 + 1)).
L.g.f.: log(G(x)), where G(x) is the g.f. for A280950.