A271490
Size of maximal subset of points of n X n grid such that no two points are at the same distance.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 7, 8, 9, 10, 10, 11, 11, 12, 13, 13
Offset: 1
From _Ehit Dinesh Agarwal_, May 28 2020: (Start)
An 11 X 11 grid has only two subsets of size 10, barring symmetry: {(0,0), (0,2), (0,3), (0,7), (1,10), (5,4), (6,0), (8,7), (9,8), (10, 10)} and {(0,0), (0,6), (0,7), (1,2), (4,10), (7,8), (7,10), (9,2), (9,6), (10,5)}.
A 12 x 13 grid has only four subsets of size 11, barring symmetry: {(0,0), (0,1), (0,9), (0,12), (2,0), (5,3), (6,12), (7,0), (8,4), (10,10), (11,11)}. (End)
- R. K. Guy, Unsolved Problems in Number Theory, Third Edition, Springer New York, 2004, F2, 367-368.
- Keith F. Lynch, Posting to Math Fun Mailing List, Apr 02 2016.
A351699
T(n,k) is the number of non-congruent maximal subsets of a grid of n X k lattice points (k <= n), such that no two points are at the same distance, and the points do not fit into a smaller grid. The size of the subsets is given by A351700. T(n,k) and A351700 are triangles read by rows.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 1, 5, 10, 1, 5, 28, 7, 21, 2, 19, 8, 104, 330, 2, 1, 4, 70, 15, 110, 574, 1, 3, 30, 272, 205, 4, 71, 563, 1991, 4, 68, 50, 1001, 113, 1130, 4, 76, 383, 9, 8, 362, 35, 1150, 23, 363, 3975, 7, 38, 8, 18, 1082, 415, 2, 638, 7503, 23, 515, 5802, 2, 2, 150, 62, 4238, 120, 1, 55, 1776, 17277, 26, 481, 2388
Offset: 1
The triangle begins:
#
# 1: 1 Counting grids n X k.
( 1 ) Two lines per side length n:
# 2: 2 2 1. for other side k = 1, 2, ...
( 1 1 ) maximal number of points
# 3: 2 3 3 2. number of configurations
( 1 2 1 )
# 4: 3 4 4 4 Example: 28 figures with
( 1 1 5 10 ) 4 points on 5 X 3
# 5: 3 4 4 5 5
( 1 5 28 7 21 )
# 6: 3 4 5 5 5 6
( 2 19 8 104 330 2 )
# 7: 4 5 5 6 6 6 7
( 1 4 70 15 110 574 1 )
# 8: 4 5 5 6 7 7 7 7
( 3 30 272 205 4 71 563 1991 )
# 9: 4 5 6 6 7 7 8 8 8
( 4 68 50 1001 113 1130 4 76 383 )
#10: 4 6 6 7 7 8 8 8 9 9
( 9 8 362 35 1150 23 363 3975 7 38 )
#11: 4 6 6 7 8 8 8 9 9 9 10
( 8 18 1082 415 2 638 7503 23 515 5802 2 )
#
# Grid n X k configurations with
# distinct distances
.
.
All T(6,3) = 8 configurations
0 1 2 3 4 5 0 1 2 3 4 5
------------------- -------------------
2 | . X X . X . 2 | . . . . X .
1 | . . . . . X 1 | . . . . . X
0 | X . . . . . 0 | X . X . . X
y /------------------- y /-------------------
x 0 1 2 3 4 5 x 0 1 2 3 4 5
{1,2,4,5,8,9,10,17,20,26} dist^2 {1,2,4,5,8,9,10,20,25,26}
0 1 2 3 4 5 0 1 2 3 4 5
------------------- -------------------
2 | . . X . X . 2 | . X . X . .
1 | . . . . . X 1 | X . . . . .
0 | X X . . . . 0 | X . . . . X
y /------------------- y /-------------------
x 0 1 2 3 4 5 x 0 1 2 3 4 5
{1,2,4,5,8,10,13,17,20,26} dist^2 {1,2,4,5,8,10,13,20,25,26}
0 1 2 3 4 5 0 1 2 3 4 5
------------------- -------------------
2 | . . . . X . 2 | . . X . X .
1 | X . . . . X 1 | X . . . . X
0 | X . X . . . 0 | X . . . . .
y /------------------- y /-------------------
x 0 1 2 3 4 5 x 0 1 2 3 4 5
{1,2,4,5,8,10,17,20,25,26} dist^2 {1,2,4,5,8,10,17,20,25,26}
0 1 2 3 4 5 0 1 2 3 4 5
------------------- -------------------
2 | . . X . . X 2 | X . . . . X
1 | . . . . . . 1 | . . . . . .
0 | X X . . . X 0 | X . . X X .
y /------------------- y /-------------------
x 0 1 2 3 4 5 x 0 1 2 3 4 5
{1,4,5,8,9,13,16,20,25,29} dist^2 {1,4,5,8,9,13,16,20,25,29}
.
A353447
a(n) is the number of tetrapods standing on the four edges of an n X n grid, so that no two feet are the same distance apart and no foot is on a corner. Tetrapods with congruent footprints are counted only once.
Original entry on oeis.org
0, 0, 1, 11, 40, 105, 190, 379, 616, 987, 1426, 2139, 2964, 4130, 5403, 7180, 9155, 11716, 14458, 18092, 22037, 26808, 31793, 38343, 45060, 53184, 61613, 71878, 82466, 95368, 108195, 123790, 140040, 158457, 177405, 200020, 223039, 248769, 275214, 306411, 337645
Offset: 3
.
. C . a(3) = 0 . . . C .
D . B <=== since AB = CD . . . . .
. A . is forbidden . . . . B
. . . . .
. C . . D . . . .
a(4) = 0 ===> ? . . . . A . . .
(there is no ? . . B ______________
space for D) . A . . a(5) = 1
(No other solutions)
.
. . . . . The tetrapod has 6 distinct
D . . . . squared distances 4, 5, 10,
. . . . C <===== 13, 17, 18, but it uses only
. . . . . three edges of the 5 X 5 grid.
. A . B . (Not allowed.)
.
The general case without excluding the corners of the grid rectangle is covered in
A354700 and
A354701.
Showing 1-3 of 3 results.
Comments