A353532
T(n,m) is the number of non-congruent quadrilaterals with integer vertex coordinates (x1,1), (n,y2), (x3,m), (1,y4), 1 < x1, x3 < n, 1 < y2, y4 < m, m <= n, such that the 6 distances between the 4 vertices are distinct.
Original entry on oeis.org
0, 0, 0, 0, 3, 1, 1, 7, 12, 11, 1, 11, 26, 52, 40, 4, 23, 50, 94, 147, 105, 4, 30, 69, 127, 198, 301, 190, 10, 49, 103, 192, 302, 444, 583, 379, 10, 58, 127, 244, 387, 576, 754, 1039, 616, 18, 84, 180, 329, 509, 756, 989, 1334, 1680, 987, 18, 94, 209, 389, 611, 910, 1203, 1618, 2052, 2581, 1426
Offset: 3
The triangle begins
\ m 3 4 5 6 7 8 9 10
n \-------------------------------------
3 | 0, | | | | | | |
4 | 0, 0, | | | | | |
5 | 0, 3, 1, | | | | |
6 | 1, 7, 12, 11, | | | |
7 | 1, 11, 26, 52, 40, | | |
8 | 4, 23, 50, 94, 147, 105, | |
9 | 4, 30, 69, 127, 198, 301, 190, |
10 | 10, 49, 103, 192, 302, 444, 583, 379
.
.
4 | . C . . . There are six squared distances.
3 | . . . . . They are arranged as follows:
2 | D . . . B AB-BC-CD-DA (counterclockwise)
1 | . A . . . AC X DB (across)
y /---------- Here: AB = 3^2 + 1^2 = 10,
x 1 2 3 4 5 BC = 13, CD = 5, DA = 2,
. AC = 9, DB = 16
10-13-5-2 <==== yielding this
9 X 16 <==== description
.
.
T(5,4) = a(5) = 3:
.
4 | . X . . . 4 | . X . . . 4 | . . X . .
3 | . . . . . 3 | . . . . X 3 | . . . . X
2 | X . . . X 2 | X . . . . 2 | X . . . .
1 | . X . . . 1 | . X . . . 1 | . X . . .
y /---------- y /---------- y /----------
x 1 2 3 4 5 x 1 2 3 4 5 x 1 2 3 4 5
.
10-13-5-2 13-10-5-2 13-5-8-2
9 X 16 9 X 17 10 X 17
.
T(5,5) = a(6) = A353447(5) = 1:
.
5 | . . . X .
4 | . . . . .
3 | . . . . X 13-5-18-2
2 | X . . . . 20 X 17
1 | . X . . .
y /----------
x 1 2 3 4 5
.
T(6,3) = a(7) = 1:
.
3 | . . . X . .
2 | X . . . . X 17-5-10-2
1 | . X . . . . 8 X 25
y /------------
x 1 2 3 4 5 6
.
T(6,4) = a(8) = 7:
.
4 | . X . . . . 4 | . X . . . . 4 | . . X . . . 4 | . . . X . .
3 | . . . . . . 3 | . . . . . X 3 | . . . . . . 3 | X . . . . .
2 | X . . . . X 2 | X . . . . . 2 | X . . . . X 2 | . . . . . X
1 | . X . . . . 1 | . X . . . . 1 | . X . . . . 1 | . X . . . .
y /------------ y /------------ y /------------ y /------------
x 1 2 3 4 5 6 x 1 2 3 4 5 6 x 1 2 3 4 5 6 x 1 2 3 4 5 6
.
17-20-5-2 20-17-5-2 17-13-8-2 17-8-10-5
9 X 25 9 X 26 10 X 25 13 X 26
.
4 | . . . . X . 4 | . . X . . . 4 | . . X . . .
3 | . . . . . . 3 | . . . . . . 3 | . . . . . X
2 | X . . . . X 2 | X . . . . X 2 | X . . . . .
1 | . X . . . . 1 | . . X . . . 1 | . . X . . .
y /------------ y /------------ y /------------
x 1 2 3 4 5 6 x 1 2 3 4 5 6 x 1 2 3 4 5 6
.
17-5-20-2 10-13-8-5 13-10-8-5
18 X 25 9 X 25 9 X 26
.
The general case without excluding the corners of the grid rectangle is covered in
A354700 and
A354701.
Original entry on oeis.org
0, 0, 5, 21, 71, 181, 366, 585, 1009, 1562, 2312, 3206, 4490, 5967, 7939, 10023, 12913, 15900, 19951, 24153, 29483, 35227, 42039, 49103, 57998, 67518, 78426, 90010, 103631, 117759, 134551, 150970, 171440, 192305, 215740, 239549, 268137, 296993, 329001, 361740, 400113
Offset: 1
A353533
T(n,m) with 4 <= m < n is the number of quadrilaterals in A353532 with perpendicular diagonals, where T(n,m) is a triangle read by rows.
Original entry on oeis.org
1, 2, 1, 2, 2, 3, 3, 3, 4, 6, 3, 5, 5, 8, 9, 4, 4, 6, 12, 12, 12, 4, 4, 12, 8, 11, 15, 14, 5, 5, 8, 10, 15, 15, 20, 18, 5, 5, 8, 27, 15, 33, 32, 26, 25, 6, 6, 10, 11, 17, 17, 23, 22, 29, 29, 6, 6, 10, 12, 48, 18, 24, 29, 30, 42, 34, 7, 7, 16, 14, 21, 21, 41, 69, 34
Offset: 5
The quadrilaterals counted in A353532 with m = 3 or m = n cannot have perpendicular diagonals, and are therefore omitted in the triangle of this sequence.
.
\ m 3 4 5 6 7 8 9 10 11
n \-----------------------------------
3 | 0, | | | | | | | |
4 | 0, 0, | | | | | | |
5 | 0, 1, 0, | | | | | |
6 | 0, 2, 1, 0, | | | | |
7 | 0, 2, 2, 3, 0, | | | |
8 | 0, 3, 3, 4, 6, 0, | | |
9 | 0, 3, 5, 5, 8, 9, 0, | |
10 | 0, 4, 4, 6, 12, 12, 12, 0, |
11 | 0, 4, 4, 12, 8, 11, 15, 14, 0
.
T(5,4) = a(1) = 1:
.
4 | . C . . . Squared distances denoted
3 | . . . . . as in examples A353532:
2 | D . . . B
1 | . A . . . AB-BC-CD-DA (around)
y /---------- AC X DB (across)
x 1 2 3 4 5
.
10-13-5-2
9 X 16
.
T(6,4) = a(2) = 2:
.
4 | . X . . . . 4 | . . X . . .
3 | . . . . . . 3 | . . . . . .
2 | X . . . . X 2 | X . . . . X
1 | . X . . . . 1 | . . X . . .
y /------------ y /------------
x 1 2 3 4 5 6 x 1 2 3 4 5 6
.
17-20-5-2 10-13-8-5
9 X 25 9 X 25
.
T(6,5) = a(3) = 1:
.
5 | . . X . . .
4 | . . . . . .
3 | . . . . . . 10-18-13-5
2 | X . . . . X 16 X 25
1 | . . X . . .
y /------------
x 1 2 3 4 5 6
.
T(9,5) = a(12) = 5;
3 quadrilaterals with diagonals parallel to the grid axes:
.
5 | . X . . . . . . . 5 | . . X . . . . . . 5 | . . . X . . . . .
4 | . . . . . . . . . 4 | . . . . . . . . . 4 | . . . . . . . . .
3 | . . . . . . . . . 3 | . . . . . . . . . 3 | . . . . . . . . .
2 | X . . . . . . . X 2 | X . . . . . . . X 2 | X . . . . . . . X
1 | . X . . . . . . . 1 | . . X . . . . . . 1 | . . . X . . . . .
y /------------------ y /------------------ y /------------------
x 1 2 3 4 5 6 7 8 9 x 1 2 3 4 5 6 7 8 9 x 1 2 3 4 5 6 7 8 9
.
50-58-10-2 37-45-13-5 26-34-18-10
16 X 64 16 X 64 16 X 64
.
The 2 quadrilaterals with diagonals not aligned with the grid axes are the smallest example of this type:
.
.
5 | . X . . . . . . . 5 | . . X . . . . . .
4 | . . . . . . . . X 4 | . . . . . . . . X
3 | . . . . . . . . . 3 | . . . . . . . . .
2 | X . . . . . . . . 2 | X . . . . . . . .
1 | . . X . . . . . . 1 | . . . X . . . . .
y /------------------ y /------------------
x 1 2 3 4 5 6 7 8 9 x 1 2 3 4 5 6 7 8 9
.
45-50-10-5 34-37-13-10
17 X 68 17 X 68
.
Original entry on oeis.org
0, 0, 0, 0, 4, 0, 6, 8, 18, 0, 62, 0, 48, 88, 77, 0, 203, 0, 265, 209, 140, 0, 628, 118, 199, 301, 614, 0, 1285, 0, 639, 583, 364, 733, 2051, 0, 467, 836, 2275, 0, 2923, 0, 1720, 2597, 704, 0, 4558, 599, 2427, 1491, 2454, 0, 4449, 2021, 5008, 1895, 1146, 0, 11618
Offset: 2
Showing 1-4 of 4 results.
Comments