cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A353532 T(n,m) is the number of non-congruent quadrilaterals with integer vertex coordinates (x1,1), (n,y2), (x3,m), (1,y4), 1 < x1, x3 < n, 1 < y2, y4 < m, m <= n, such that the 6 distances between the 4 vertices are distinct.

Original entry on oeis.org

0, 0, 0, 0, 3, 1, 1, 7, 12, 11, 1, 11, 26, 52, 40, 4, 23, 50, 94, 147, 105, 4, 30, 69, 127, 198, 301, 190, 10, 49, 103, 192, 302, 444, 583, 379, 10, 58, 127, 244, 387, 576, 754, 1039, 616, 18, 84, 180, 329, 509, 756, 989, 1334, 1680, 987, 18, 94, 209, 389, 611, 910, 1203, 1618, 2052, 2581, 1426
Offset: 3

Views

Author

Hugo Pfoertner and Rainer Rosenthal, May 02 2022

Keywords

Comments

T(n,m) is a triangle, read by rows.

Examples

			The triangle begins
    \ m 3   4    5    6    7    8    9   10
   n \-------------------------------------
   3 |  0,  |    |    |    |    |    |    |
   4 |  0,  0,   |    |    |    |    |    |
   5 |  0,  3,   1,   |    |    |    |    |
   6 |  1,  7,  12,  11,   |    |    |    |
   7 |  1, 11,  26,  52,  40,   |    |    |
   8 |  4, 23,  50,  94, 147, 105,   |    |
   9 |  4, 30,  69, 127, 198, 301, 190,   |
  10 | 10, 49, 103, 192, 302, 444, 583, 379
.
.
   4 | . C . . .    There are six squared distances.
   3 | . . . . .    They are arranged as follows:
   2 | D . . . B      AB-BC-CD-DA  (counterclockwise)
   1 | . A . . .      AC X DB      (across)
   y /----------    Here: AB = 3^2 + 1^2 = 10,
     x 1 2 3 4 5          BC = 13, CD = 5, DA = 2,
.                         AC =  9, DB = 16
      10-13-5-2  <==== yielding this
      9 X 16     <==== description
.
.
T(5,4) = a(5) = 3:
.
   4 | . X . . .     4 | . X . . .     4 | . . X . .
   3 | . . . . .     3 | . . . . X     3 | . . . . X
   2 | X . . . X     2 | X . . . .     2 | X . . . .
   1 | . X . . .     1 | . X . . .     1 | . X . . .
   y /----------     y /----------     y /----------
     x 1 2 3 4 5       x 1 2 3 4 5       x 1 2 3 4 5
.
      10-13-5-2          13-10-5-2          13-5-8-2
      9 X 16             9 X 17             10 X 17
.
T(5,5) = a(6) = A353447(5) = 1:
.
   5 | . . . X .
   4 | . . . . .
   3 | . . . . X    13-5-18-2
   2 | X . . . .    20 X 17
   1 | . X . . .
   y /----------
     x 1 2 3 4 5
.
T(6,3) = a(7) = 1:
.
   3 | . . . X . .
   2 | X . . . . X    17-5-10-2
   1 | . X . . . .    8 X 25
   y /------------
     x 1 2 3 4 5 6
.
T(6,4) = a(8) = 7:
.
   4 | . X . . . .   4 | . X . . . .   4 | . . X . . .   4 | . . . X . .
   3 | . . . . . .   3 | . . . . . X   3 | . . . . . .   3 | X . . . . .
   2 | X . . . . X   2 | X . . . . .   2 | X . . . . X   2 | . . . . . X
   1 | . X . . . .   1 | . X . . . .   1 | . X . . . .   1 | . X . . . .
   y /------------   y /------------   y /------------   y /------------
     x 1 2 3 4 5 6     x 1 2 3 4 5 6     x 1 2 3 4 5 6     x 1 2 3 4 5 6
.
       17-20-5-2         20-17-5-2         17-13-8-2         17-8-10-5
       9 X 25            9 X 26            10 X 25           13 X 26
.
   4 | . . . . X .   4 | . . X . . .   4 | . . X . . .
   3 | . . . . . .   3 | . . . . . .   3 | . . . . . X
   2 | X . . . . X   2 | X . . . . X   2 | X . . . . .
   1 | . X . . . .   1 | . . X . . .   1 | . . X . . .
   y /------------   y /------------   y /------------
     x 1 2 3 4 5 6     x 1 2 3 4 5 6     x 1 2 3 4 5 6
.
       17-5-20-2         10-13-8-5         13-10-8-5
       18 X 25           9 X 25            9 X 26
.
		

Crossrefs

The general case without excluding the corners of the grid rectangle is covered in A354700 and A354701.

Programs

  • PARI
    see Pfoertner link.

A354701 Diagonal of the triangle A354700.

Original entry on oeis.org

0, 0, 5, 21, 71, 181, 366, 585, 1009, 1562, 2312, 3206, 4490, 5967, 7939, 10023, 12913, 15900, 19951, 24153, 29483, 35227, 42039, 49103, 57998, 67518, 78426, 90010, 103631, 117759, 134551, 150970, 171440, 192305, 215740, 239549, 268137, 296993, 329001, 361740, 400113
Offset: 1

Views

Author

Hugo Pfoertner, Jun 07 2022

Keywords

Examples

			See A354700.
		

Crossrefs

Formula

a(n) = A354700(n, n).

A353533 T(n,m) with 4 <= m < n is the number of quadrilaterals in A353532 with perpendicular diagonals, where T(n,m) is a triangle read by rows.

Original entry on oeis.org

1, 2, 1, 2, 2, 3, 3, 3, 4, 6, 3, 5, 5, 8, 9, 4, 4, 6, 12, 12, 12, 4, 4, 12, 8, 11, 15, 14, 5, 5, 8, 10, 15, 15, 20, 18, 5, 5, 8, 27, 15, 33, 32, 26, 25, 6, 6, 10, 11, 17, 17, 23, 22, 29, 29, 6, 6, 10, 12, 48, 18, 24, 29, 30, 42, 34, 7, 7, 16, 14, 21, 21, 41, 69, 34
Offset: 5

Views

Author

Hugo Pfoertner and Rainer Rosenthal, May 04 2022

Keywords

Examples

			The quadrilaterals counted in A353532 with m = 3 or m = n cannot have perpendicular diagonals, and are therefore omitted in the triangle of this sequence.
.
    \ m 3   4   5   6   7   8   9  10  11
   n \-----------------------------------
   3 |  0,  |   |   |   |   |   |   |   |
   4 |  0,  0,  |   |   |   |   |   |   |
   5 |  0,  1,  0,  |   |   |   |   |   |
   6 |  0,  2,  1,  0,  |   |   |   |   |
   7 |  0,  2,  2,  3,  0,  |   |   |   |
   8 |  0,  3,  3,  4,  6,  0,  |   |   |
   9 |  0,  3,  5,  5,  8,  9,  0,  |   |
  10 |  0,  4,  4,  6, 12, 12, 12,  0,  |
  11 |  0,  4,  4, 12,  8, 11, 15, 14,  0
.
T(5,4) = a(1) = 1:
.
   4 | . C . . .      Squared distances denoted
   3 | . . . . .      as in examples A353532:
   2 | D . . . B
   1 | . A . . .       AB-BC-CD-DA (around)
   y /----------       AC X DB     (across)
     x 1 2 3 4 5
.
      10-13-5-2
      9 X 16
.
T(6,4) = a(2) = 2:
.
   4 | . X . . . .     4 | . . X . . .
   3 | . . . . . .     3 | . . . . . .
   2 | X . . . . X     2 | X . . . . X
   1 | . X . . . .     1 | . . X . . .
   y /------------     y /------------
     x 1 2 3 4 5 6       x 1 2 3 4 5 6
.
      17-20-5-2           10-13-8-5
      9 X 25              9 X 25
.
T(6,5) = a(3) = 1:
.
   5 | . . X . . .
   4 | . . . . . .
   3 | . . . . . .     10-18-13-5
   2 | X . . . . X     16 X 25
   1 | . . X . . .
   y /------------
     x 1 2 3 4 5 6
.
T(9,5) = a(12) = 5;
3 quadrilaterals with diagonals parallel to the grid axes:
.
   5 | . X . . . . . . .   5 | . . X . . . . . .   5 | . . . X . . . . .
   4 | . . . . . . . . .   4 | . . . . . . . . .   4 | . . . . . . . . .
   3 | . . . . . . . . .   3 | . . . . . . . . .   3 | . . . . . . . . .
   2 | X . . . . . . . X   2 | X . . . . . . . X   2 | X . . . . . . . X
   1 | . X . . . . . . .   1 | . . X . . . . . .   1 | . . . X . . . . .
   y /------------------   y /------------------   y /------------------
     x 1 2 3 4 5 6 7 8 9     x 1 2 3 4 5 6 7 8 9     x 1 2 3 4 5 6 7 8 9
.
         50-58-10-2              37-45-13-5              26-34-18-10
         16 X 64                 16 X 64                 16 X 64
.
The 2 quadrilaterals with diagonals not aligned with the grid axes are the smallest example of this type:
.
.
   5 | . X . . . . . . .   5 | . . X . . . . . .
   4 | . . . . . . . . X   4 | . . . . . . . . X
   3 | . . . . . . . . .   3 | . . . . . . . . .
   2 | X . . . . . . . .   2 | X . . . . . . . .
   1 | . . X . . . . . .   1 | . . . X . . . . .
   y /------------------   y /------------------
     x 1 2 3 4 5 6 7 8 9     x 1 2 3 4 5 6 7 8 9
.
         45-50-10-5              34-37-13-10
         17 X 68                 17 X 68
.
		

Crossrefs

A354491 Diagonal of the triangle A354490.

Original entry on oeis.org

0, 0, 0, 0, 4, 0, 6, 8, 18, 0, 62, 0, 48, 88, 77, 0, 203, 0, 265, 209, 140, 0, 628, 118, 199, 301, 614, 0, 1285, 0, 639, 583, 364, 733, 2051, 0, 467, 836, 2275, 0, 2923, 0, 1720, 2597, 704, 0, 4558, 599, 2427, 1491, 2454, 0, 4449, 2021, 5008, 1895, 1146, 0, 11618
Offset: 2

Views

Author

Hugo Pfoertner, May 30 2022

Keywords

Comments

Apparently, a(n) = 0 for prime n.

Crossrefs

See A353532 and A354490 for more information.
Cf. A353447.

Formula

a(n) = A354490(n, n).
Showing 1-4 of 4 results.