A353532
T(n,m) is the number of non-congruent quadrilaterals with integer vertex coordinates (x1,1), (n,y2), (x3,m), (1,y4), 1 < x1, x3 < n, 1 < y2, y4 < m, m <= n, such that the 6 distances between the 4 vertices are distinct.
Original entry on oeis.org
0, 0, 0, 0, 3, 1, 1, 7, 12, 11, 1, 11, 26, 52, 40, 4, 23, 50, 94, 147, 105, 4, 30, 69, 127, 198, 301, 190, 10, 49, 103, 192, 302, 444, 583, 379, 10, 58, 127, 244, 387, 576, 754, 1039, 616, 18, 84, 180, 329, 509, 756, 989, 1334, 1680, 987, 18, 94, 209, 389, 611, 910, 1203, 1618, 2052, 2581, 1426
Offset: 3
The triangle begins
\ m 3 4 5 6 7 8 9 10
n \-------------------------------------
3 | 0, | | | | | | |
4 | 0, 0, | | | | | |
5 | 0, 3, 1, | | | | |
6 | 1, 7, 12, 11, | | | |
7 | 1, 11, 26, 52, 40, | | |
8 | 4, 23, 50, 94, 147, 105, | |
9 | 4, 30, 69, 127, 198, 301, 190, |
10 | 10, 49, 103, 192, 302, 444, 583, 379
.
.
4 | . C . . . There are six squared distances.
3 | . . . . . They are arranged as follows:
2 | D . . . B AB-BC-CD-DA (counterclockwise)
1 | . A . . . AC X DB (across)
y /---------- Here: AB = 3^2 + 1^2 = 10,
x 1 2 3 4 5 BC = 13, CD = 5, DA = 2,
. AC = 9, DB = 16
10-13-5-2 <==== yielding this
9 X 16 <==== description
.
.
T(5,4) = a(5) = 3:
.
4 | . X . . . 4 | . X . . . 4 | . . X . .
3 | . . . . . 3 | . . . . X 3 | . . . . X
2 | X . . . X 2 | X . . . . 2 | X . . . .
1 | . X . . . 1 | . X . . . 1 | . X . . .
y /---------- y /---------- y /----------
x 1 2 3 4 5 x 1 2 3 4 5 x 1 2 3 4 5
.
10-13-5-2 13-10-5-2 13-5-8-2
9 X 16 9 X 17 10 X 17
.
T(5,5) = a(6) = A353447(5) = 1:
.
5 | . . . X .
4 | . . . . .
3 | . . . . X 13-5-18-2
2 | X . . . . 20 X 17
1 | . X . . .
y /----------
x 1 2 3 4 5
.
T(6,3) = a(7) = 1:
.
3 | . . . X . .
2 | X . . . . X 17-5-10-2
1 | . X . . . . 8 X 25
y /------------
x 1 2 3 4 5 6
.
T(6,4) = a(8) = 7:
.
4 | . X . . . . 4 | . X . . . . 4 | . . X . . . 4 | . . . X . .
3 | . . . . . . 3 | . . . . . X 3 | . . . . . . 3 | X . . . . .
2 | X . . . . X 2 | X . . . . . 2 | X . . . . X 2 | . . . . . X
1 | . X . . . . 1 | . X . . . . 1 | . X . . . . 1 | . X . . . .
y /------------ y /------------ y /------------ y /------------
x 1 2 3 4 5 6 x 1 2 3 4 5 6 x 1 2 3 4 5 6 x 1 2 3 4 5 6
.
17-20-5-2 20-17-5-2 17-13-8-2 17-8-10-5
9 X 25 9 X 26 10 X 25 13 X 26
.
4 | . . . . X . 4 | . . X . . . 4 | . . X . . .
3 | . . . . . . 3 | . . . . . . 3 | . . . . . X
2 | X . . . . X 2 | X . . . . X 2 | X . . . . .
1 | . X . . . . 1 | . . X . . . 1 | . . X . . .
y /------------ y /------------ y /------------
x 1 2 3 4 5 6 x 1 2 3 4 5 6 x 1 2 3 4 5 6
.
17-5-20-2 10-13-8-5 13-10-8-5
18 X 25 9 X 25 9 X 26
.
The general case without excluding the corners of the grid rectangle is covered in
A354700 and
A354701.
A353447
a(n) is the number of tetrapods standing on the four edges of an n X n grid, so that no two feet are the same distance apart and no foot is on a corner. Tetrapods with congruent footprints are counted only once.
Original entry on oeis.org
0, 0, 1, 11, 40, 105, 190, 379, 616, 987, 1426, 2139, 2964, 4130, 5403, 7180, 9155, 11716, 14458, 18092, 22037, 26808, 31793, 38343, 45060, 53184, 61613, 71878, 82466, 95368, 108195, 123790, 140040, 158457, 177405, 200020, 223039, 248769, 275214, 306411, 337645
Offset: 3
.
. C . a(3) = 0 . . . C .
D . B <=== since AB = CD . . . . .
. A . is forbidden . . . . B
. . . . .
. C . . D . . . .
a(4) = 0 ===> ? . . . . A . . .
(there is no ? . . B ______________
space for D) . A . . a(5) = 1
(No other solutions)
.
. . . . . The tetrapod has 6 distinct
D . . . . squared distances 4, 5, 10,
. . . . C <===== 13, 17, 18, but it uses only
. . . . . three edges of the 5 X 5 grid.
. A . B . (Not allowed.)
.
The general case without excluding the corners of the grid rectangle is covered in
A354700 and
A354701.
A354700
T(w,h) is the number of non-congruent quadrilaterals whose vertices with integer coordinates (x_i, y_i) all lie on the perimeter of a rectangle of width w and height h, with no 3 points on the same edge of the rectangle, max(x_i) - min(x_i) = w and max(y_i) - min(y_i) = h, such that the 6 distances between the 4 vertices are distinct.
Original entry on oeis.org
0, 0, 0, 1, 4, 5, 2, 16, 36, 21, 8, 33, 69, 116, 71, 13, 52, 126, 201, 317, 181, 22, 84, 191, 299, 445, 639, 366, 28, 110, 249, 373, 581, 839, 1105, 585, 43, 157, 330, 529, 806, 1094, 1463, 1856, 1009, 50, 190, 407, 653, 1014, 1360, 1853, 2295, 2958, 1562
Offset: 1
The triangle begins:
0;
0, 0;
1, 4, 5;
2, 16, 36, 21;
8, 33, 69, 116, 71;
13, 52, 126, 201, 317, 181;
22, 84, 191, 299, 445, 639, 366;
28, 110, 249, 373, 581, 839, 1105, 585
.
T(3,1) = 1:
1 | D . . C Squared distances:
0 | A . B . Sides: AB = 4, BC = 2, CD = 9, DA = 1;
y /-------- Diagonals: AC = 10, BD = 5.
x 0 1 2 3
.
T(3,2) = 4:
2 | D . . C Squared distances:
1 | . . . . Sides: AB = 1, BC = 8, CD = 9, DA = 4;
0 | A B . . Diagonals: AC = 13, BD = 5.
y /--------
x 0 1 2 3
2 | . . . D Squared distances:
1 | . . . C Sides: AB = 4, BC = 2, CD = 1, DA = 13;
0 | A . B . Diagonals: AC = 10, BD = 5.
y /--------
x 0 1 2 3
2 | . . D . Squared distances:
1 | . . . C Sides: AB = 9, BC = 1, CD = 2, DA = 8;
0 | A . . B Diagonals: AC = 10, BD = 5.
y /--------
x 0 1 2 3
2 | . . C . Squared distances:
1 | D . . B Sides: AB = 10, BC = 2, CD = 5, DA = 1;
0 | A . . . Diagonals: AC = 8, BD = 9.
y /--------
x 0 1 2 3
The last 2 quadrilaterals have the same set {1, 2, 5, 8, 9, 10} of squared distances, but with different allocation of sides and diagonals.
.
T(3,3) = 5:
3 | . D . C 3 | . . . C 3 | . . . D 3 | . D . . 3 | . . D .
2 | . . . . 2 | D . . . 2 | . . . . 2 | . . . C 2 | . . . .
1 | . . . . 1 | . . . . 1 | . . . C 1 | . . . . 1 | . . . C
0 | A B . . 0 | A B . . 0 | A B . . 0 | A B . . 0 | A . B .
y /-------- y /-------- y /-------- y /-------- y /--------
x 0 1 2 3 x 0 1 2 3 x 0 1 2 3 x 0 1 2 3 x 0 1 2 3
Quadrilaterals Q2 and Q3 have the same set {1, 4, 5, 10, 13, 18} of squared distances, but the allocation of sides and diagonals differ: Squared diagonals are AC, BD {18,5} in Q2, and {10,13} in Q3.
Showing 1-3 of 3 results.
Comments