cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A353532 T(n,m) is the number of non-congruent quadrilaterals with integer vertex coordinates (x1,1), (n,y2), (x3,m), (1,y4), 1 < x1, x3 < n, 1 < y2, y4 < m, m <= n, such that the 6 distances between the 4 vertices are distinct.

Original entry on oeis.org

0, 0, 0, 0, 3, 1, 1, 7, 12, 11, 1, 11, 26, 52, 40, 4, 23, 50, 94, 147, 105, 4, 30, 69, 127, 198, 301, 190, 10, 49, 103, 192, 302, 444, 583, 379, 10, 58, 127, 244, 387, 576, 754, 1039, 616, 18, 84, 180, 329, 509, 756, 989, 1334, 1680, 987, 18, 94, 209, 389, 611, 910, 1203, 1618, 2052, 2581, 1426
Offset: 3

Views

Author

Hugo Pfoertner and Rainer Rosenthal, May 02 2022

Keywords

Comments

T(n,m) is a triangle, read by rows.

Examples

			The triangle begins
    \ m 3   4    5    6    7    8    9   10
   n \-------------------------------------
   3 |  0,  |    |    |    |    |    |    |
   4 |  0,  0,   |    |    |    |    |    |
   5 |  0,  3,   1,   |    |    |    |    |
   6 |  1,  7,  12,  11,   |    |    |    |
   7 |  1, 11,  26,  52,  40,   |    |    |
   8 |  4, 23,  50,  94, 147, 105,   |    |
   9 |  4, 30,  69, 127, 198, 301, 190,   |
  10 | 10, 49, 103, 192, 302, 444, 583, 379
.
.
   4 | . C . . .    There are six squared distances.
   3 | . . . . .    They are arranged as follows:
   2 | D . . . B      AB-BC-CD-DA  (counterclockwise)
   1 | . A . . .      AC X DB      (across)
   y /----------    Here: AB = 3^2 + 1^2 = 10,
     x 1 2 3 4 5          BC = 13, CD = 5, DA = 2,
.                         AC =  9, DB = 16
      10-13-5-2  <==== yielding this
      9 X 16     <==== description
.
.
T(5,4) = a(5) = 3:
.
   4 | . X . . .     4 | . X . . .     4 | . . X . .
   3 | . . . . .     3 | . . . . X     3 | . . . . X
   2 | X . . . X     2 | X . . . .     2 | X . . . .
   1 | . X . . .     1 | . X . . .     1 | . X . . .
   y /----------     y /----------     y /----------
     x 1 2 3 4 5       x 1 2 3 4 5       x 1 2 3 4 5
.
      10-13-5-2          13-10-5-2          13-5-8-2
      9 X 16             9 X 17             10 X 17
.
T(5,5) = a(6) = A353447(5) = 1:
.
   5 | . . . X .
   4 | . . . . .
   3 | . . . . X    13-5-18-2
   2 | X . . . .    20 X 17
   1 | . X . . .
   y /----------
     x 1 2 3 4 5
.
T(6,3) = a(7) = 1:
.
   3 | . . . X . .
   2 | X . . . . X    17-5-10-2
   1 | . X . . . .    8 X 25
   y /------------
     x 1 2 3 4 5 6
.
T(6,4) = a(8) = 7:
.
   4 | . X . . . .   4 | . X . . . .   4 | . . X . . .   4 | . . . X . .
   3 | . . . . . .   3 | . . . . . X   3 | . . . . . .   3 | X . . . . .
   2 | X . . . . X   2 | X . . . . .   2 | X . . . . X   2 | . . . . . X
   1 | . X . . . .   1 | . X . . . .   1 | . X . . . .   1 | . X . . . .
   y /------------   y /------------   y /------------   y /------------
     x 1 2 3 4 5 6     x 1 2 3 4 5 6     x 1 2 3 4 5 6     x 1 2 3 4 5 6
.
       17-20-5-2         20-17-5-2         17-13-8-2         17-8-10-5
       9 X 25            9 X 26            10 X 25           13 X 26
.
   4 | . . . . X .   4 | . . X . . .   4 | . . X . . .
   3 | . . . . . .   3 | . . . . . .   3 | . . . . . X
   2 | X . . . . X   2 | X . . . . X   2 | X . . . . .
   1 | . X . . . .   1 | . . X . . .   1 | . . X . . .
   y /------------   y /------------   y /------------
     x 1 2 3 4 5 6     x 1 2 3 4 5 6     x 1 2 3 4 5 6
.
       17-5-20-2         10-13-8-5         13-10-8-5
       18 X 25           9 X 25            9 X 26
.
		

Crossrefs

The general case without excluding the corners of the grid rectangle is covered in A354700 and A354701.

Programs

  • PARI
    see Pfoertner link.

A354488 T(w,h) with 3 <= h < w is the number of quadrilaterals as defined in A353532 with diagonals intersecting at the same angle theta as the diagonals of the grid rectangle with side lengths w > h, where T(w,h) is a triangle read by rows.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 23, 0, 0, 0, 0, 0, 0, 0
Offset: 4

Views

Author

Hugo Pfoertner and Rainer Rosenthal, May 28 2022

Keywords

Comments

The integer coordinates of the 4 vertices of the quadrilateral are (x1,0), (w,y2), (x3,h), (0,y4), 0 < x1, x3 < w, 0 < y2, y4 < h, such that the 6 distances between the 4 vertices are distinct.
Quadrilaterals with this property cannot occur for rectangles with h = 2 and for rectangles with h = w. Thus the triangle is given without the column h = 2 and the diagonal h = w.
The relationship to A353532 is that the number of lattice points n X m is used there, while here the side lengths of the lattice rectangle w = n - 1 and h = m - 1 are used.
The intersection angle of the rectangle's diagonals is delta = 2*phi, where phi is the angle between a diagonal and a longer side of the grid rectangle. So tan(delta) = 2*tan(phi)/(1 - tan(phi)^2) where tan(phi) = h/w, i.e., tan(delta) = 2*w*h/(w^2 - h^2).

Examples

			The triangle begins:
   4: 0,
   5: 0,0,
   6: 0,0, 0,
   7: 0,0, 0, 0,
   8: 0,3, 0, 0, 0,
   9: 4,0, 0, 0, 0, 0,
  10: 0,0, 0, 0, 0, 0, 0,
  11: 0,0, 0, 0, 0, 0, 0, 0,
  12: 0,0, 0, 3, 0,11, 0, 0,0,
  13: 0,0, 0, 0, 0, 0, 0, 0,0,  0,
  14: 0,0, 0, 0,12, 0, 0, 0,0,  0,0,
  15: 0,0, 0, 0, 0, 0, 0,32,0,  0,0, 0,
  16: 0,0, 0, 0, 0,23, 0, 0,0,  0,0, 0,  0,
  17: 0,0, 0, 0, 0, 0, 0, 0,0,  0,0, 0,  0, 0,
  18: 0,0, 0,33, 0, 0,51, 0,0, 53,0, 0,  0, 0,0,
  19: 0,0, 0, 0, 0, 0, 0, 0,0,  0,0, 0,  0, 0,0, 0,
  20: 0,0, 0, 0, 0, 0, 0, 0,0, 46,0, 0,  0, 0,0, 0,0,
  21: 0,0, 0, 0,18, 0, 0, 0,0,  0,0, 0,  0, 0,0, 0,0,0,
  22: 0,0, 0, 0, 0, 0, 0, 0,0,  0,0, 0,  0, 0,0, 0,0,0,  0,
  23: 0,0, 0, 0, 0, 0, 0, 0,0,  0,0, 0,  0, 0,0, 0,0,0,  0,0,
  24: 0,0, 0, 0, 0,53, 0, 0,0,107,0, 0,  0,57,0,91,0,0,  0,0,0,
  25: 0,0,24, 0, 0, 0, 0, 0,0,  0,0, 0,108, 0,0, 0,0,0,  0,0,0,0,
  26: 0,0, 0, 0, 0, 0, 0, 0,0,  0,0, 0,  0, 0,0, 0,0,0,  0,0,0,0,0,
  27: 0,0, 0, 0, 0, 0,55, 0,0,  0,0, 0,  0, 0,0, 0,0,0,  0,0,0,0,0,0,
  28: 0,0, 0, 0, 0, 0, 0, 0,0,  0,0,57,  0, 0,0, 0,0,0,182,0,0,0,0,0,0,
  29: 0,0, 0, 0, 0, 0, 0, 0,0,  0,0, 0,  0, 0,0, 0,0,0,  0,0,0,0,0,0,0,0
   n  ------------------------------------------------------------------
   m: 3 4  5  6  7  8  9 10 .  12 . 14  15 16 . 18 . .  21 . . . . . . 28
.
T(8,4) = 3, tan(theta) = 4/3 = tan(2*phi).
Intersection angle of diagonals of the grid rectangle:
tan(2*phi) = 2 *(1/2) / (1 - (1/2)^2) = 1 / (3/4) = 4/3, with tan(phi) = 4/8 = 1/2.
.
  4 | . . . . . C . . .   4 | . . . . . C . . .   4 | . . . . . . C . .
  3 | . . . . . . . . .   3 | . . . . . . . . .   3 | . . . . . . . . .
  2 | . . . . . . . . .   3 | D . . . . . . . B   2 | . . . . . . . . .
  1 | D . . . . . . . B   1 | . . . . . . . . .   1 | D . . . . . . . B
  0 | . . A . . . . . .   0 | . . A . . . . . .   0 | . . . A . . . . .
  y /------------------   y /------------------   y /------------------
    x 0 1 2 3 4 5 6 7 8     x 0 1 2 3 4 5 6 7 8     x 0 1 2 3 4 5 6 7 8
.
T(9,3) = 4, tan(theta) = 3/4 = tan(2*phi).
tan(phi) = 3/9 = 1/3, tan(2*phi) = 2*(1/3)/(1 - (1/3)^2) = (2/3)/(8/9) = 18/24 = 3/4.
.
  3 | . . . . . C . . . .       3 | . . . . . C . . . .
  2 | . . . . . . . . . .       2 | D . . . . . . . . B
  1 | D . . . . . . . . B       1 | . . . . . . . . . .
  0 | . A . . . . . . . .       0 | . A . . . . . . . .
  y /--------------------       y /--------------------
    x 0 1 2 3 4 5 6 7 8 9         x 0 1 2 3 4 5 6 7 8 9
.
  3 | . . . . . . C . . .       3 | . . . . . . C . . .
  2 | . . . . . . . . . .       2 | D . . . . . . . . B
  1 | D . . . . . . . . B       1 | . . . . . . . . . .
  0 | . . A . . . . . . .       0 | . . A . . . . . . .
  y /--------------------       y /--------------------
    x 0 1 2 3 4 5 6 7 8 9         x 0 1 2 3 4 5 6 7 8 9
.
T(12,6) = 3, with slopes of diagonals of quadrilateral against y = 0: sAC, sDB, sAC = 6/2 = 3, sDB = 4/12 = 1/3, angle difference theta = sAC - sDB.
Using tan(alpha - beta) = (tan(alpha) - tan(beta))/(1 + tan(alpha)*tan(beta)), tan(theta) = (sAC - sBD) / (1 + sAC*sBD) = (3 - 1/3)/( 1 + 1 ) = 4/3.
tan(phi) = 6/12 = 1/2; tan(2*phi) = 2*(1/2)/(1 - (1/2)^2) = 1/(3/4) = 4/3.
.
  6 | . . . C . . . . . . . . .       6 | . . . . C . . . . . . . .
  5 | . . . . . . . . . . . . B       5 | . . . . . . . . . . . . B
  4 | . . . . . . . . . . . . .       4 | . . . . . . . . . . . . .
  3 | . . . . . . . . . . . . .       3 | . . . . . . . . . . . . .
  2 | . . . . . . . . . . . . .       2 | . . . . . . . . . . . . .
  1 | D . . . . . . . . . . . .       1 | D . . . . . . . . . . . .
  0 | . A . . . . . . . . . . .       0 | . . A . . . . . . . . . .
  y /--------------------------       y /--------------------------
    x 0 1 2 3 4 5 6 7 8 9 0 1 2         x 0 1 2 3 4 5 6 7 8 9 0 1 2
.
  6 | . . . . . . C . . . . . .
  5 | . . . . . . . . . . . . B
  4 | . . . . . . . . . . . . .
  3 | . . . . . . . . . . . . .
  2 | . . . . . . . . . . . . .
  1 | D . . . . . . . . . . . .
  0 | . . . . A . . . . . . . .
  y /--------------------------
    x 0 1 2 3 4 5 6 7 8 9 0 1 2
		

Crossrefs

A354489 provides the widths of those grid rectangles for which no inserted quadrilaterals with matching angles of the diagonals exist, i.e., all terms = 0 in a row of the triangle.

Programs

  • PARI
    \\ See link. The program a354488(w1,w2) prints a list of the nonzero terms [w, d, T_a353532(w+1,d+1), T(w,d)] in the range w1 <= w <= w2.

A354490 T(w,h) with 2 <= h <= w is the number of quadrilaterals as defined in A353532 with diagonals intersecting at integer coordinates, where T(w,h) is a triangle read by rows.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 1, 3, 1, 0, 0, 3, 3, 4, 4, 3, 6, 6, 6, 12, 0, 2, 6, 7, 9, 15, 13, 6, 6, 10, 12, 12, 30, 18, 27, 8, 4, 11, 11, 12, 24, 25, 33, 41, 18, 10, 17, 21, 17, 36, 24, 35, 32, 38, 0, 8, 17, 19, 21, 51, 43, 65, 84, 87, 57, 62, 15, 24, 31, 25, 49, 31, 48, 45, 53, 33, 76, 0
Offset: 2

Views

Author

Hugo Pfoertner, May 30 2022

Keywords

Comments

The integer coordinates of the 4 vertices of the quadrilateral are (x1,0), (w,y2), (x3,h), (0,y4), 0 < x1, x3 < w, 0 < y2, y4 < h, such that the 6 distances between the 4 vertices are distinct.
The relationship to A353532 is that the number of lattice points n X m is used there, while here the side lengths of the lattice rectangle w = n - 1 and h = m - 1 are used.

Examples

			The triangle begins, with corresponding terms of A353532 shown in parenthesis:
   \ d 2       3       4        5        6        7        8       9
  w \---------------------------------------------------------------------
  2 |  0 ( 0)  |       |        |        |        |        |       |
  3 |  0 ( 0)  0 ( 0)  |        |        |        |        |       |
  4 |  0 ( 0)  1 ( 3)  0 (  1)  |        |        |        |       |
  5 |  1 ( 1)  3 ( 7)  1 ( 12)  0 ( 11)  |        |        |       |
  6 |  0 ( 1)  3 (11)  3 ( 26)  4 ( 52)  4 ( 40)  |        |       |
  7 |  3 ( 4)  6 (23)  6 ( 50)  6 ( 94) 12 (147)  0 (105)  |       |
  8 |  2 ( 4)  6 (30)  7 ( 69)  9 (127) 15 (198) 13 (301)  6 (190) |
  9 |  6 (10) 10 (49) 12 (103) 12 (192) 30 (302) 18 (444) 27 (583) 8 (379)
.
Only 1 = T(4,3) of the 3 = T_a353532(5,4) quadrilaterals has diagonals AC, BD whose intersection point S has integer coordinates:
.
   3 | . C . . .     3 | . C . . .     3 | . . C . .
   2 | . . . . .     2 | . . . . B     2 | . . . . B
   1 | D S . . B     1 | D . . . .     1 | D . . . .
   0 | . A . . .     0 | . A . . .     0 | . A . . .
   y /----------     y /----------     y /----------
     x 0 1 2 3 4       x 0 1 2 3 4       x 0 1 2 3 4
        S=(1,1)          S=(1,5/4)     S=(16/11,15/11)
.
T(5,2) = T_a353532(6,3) = 1:
.
   2 | . . . C . .
   1 | D . S . . B
   0 | . A . . . .
   y /------------
     x 0 1 2 3 4 5
        S=(2,1)
.
T(5,3) = 3 of the T_a353532(6,4) = 7 intersection points S of the diagonals AC, BD have integer coordinates:
.
  3 | . C . . . .   3 | . C . . . .   3 | . . C . . .   3 | . . . C . .
  2 | . . . . . .   2 | . . . . . B   2 | . . . . . .   2 | D . . . . .
  1 | D S . . . B   1 | D . . . . .   1 | D . . . . B   1 | . . . . . B
  0 | . A . . . .   0 | . A . . . .   0 | . A . . . .   0 | . A . . . .
  y /------------   y /------------   y /------------   y /------------
    x 0 1 2 3 4 5     x 0 1 2 3 4 5     x 0 1 2 3 4 5     x 0 1 2 3 4 5
       S=(1,1)           S=(1,6/5)         S=(4/3,1)     S=(35/17,27/17)
.
  3 | . . . . C .   3 | . . C . . .   3 | . . C . . .
  2 | . . . . . .   2 | . . . . . .   2 | . . . . . B
  1 | D . S . . B   1 | D . S . . B   1 | D . . . . .
  0 | . A . . . .   0 | . . A . . .   0 | . . A . . .
  y /------------   y /------------   y /------------
    x 0 1 2 3 4 5     x 0 1 2 3 4 5     x 0 1 2 3 4 5
       S=(2,1)           S=(2,1)           S=(2,7/5)
		

Crossrefs

A354491 is the diagonal of the triangle.

Programs

  • PARI
    \\ See link. The program a354490 (w1, w2) prints the terms for the rows w1 .. w2. An auxiliary function sinter is defined to determine the rational intersection point of the diagonals.
Showing 1-3 of 3 results.