A359963
Arithmetic numbers (A003601) having more divisors than all smaller arithmetic numbers.
Original entry on oeis.org
1, 3, 6, 20, 30, 60, 168, 420, 840, 1980, 2160, 2520, 7560, 10080, 15120, 27720, 79200, 83160, 110880, 166320, 262080, 332640, 554400, 786240, 831600, 1081080, 1441440, 2162160, 2882880, 4324320, 7207200, 8648640, 10810800, 17297280, 21621600, 36756720, 43243200
Offset: 1
-
seq[nmax_] := Module[{s = {}, dm = 0, d}, Do[d = DivisorSigma[0, n]; If[d > dm && Divisible[DivisorSigma[1, n], d], dm = d; AppendTo[s, n]], {n, 1, nmax}]; s]; seq[10^6]
-
lista(nmax) = {my(dm = 0, d); for(n = 1, nmax, d = numdiv(n); if(d > dm && sigma(n)%d == 0, dm = d; print1(n, ", "))); }
A335316
Harmonic numbers (A001599) with a record harmonic mean of divisors.
Original entry on oeis.org
1, 6, 28, 140, 270, 672, 1638, 2970, 8190, 27846, 30240, 167400, 237510, 332640, 695520, 1421280, 2178540, 2457000, 11981970, 14303520, 17428320, 23963940, 27027000, 46683000, 56511000, 71253000, 142990848, 163390500, 164989440, 191711520, 400851360, 407386980
Offset: 1
The first 7 harmonic numbers are 1, 6, 28, 140, 270, 496 and 672. Their harmonic means of divisors (A001600) are 1, 2, 3, 5, 6, 5 and 8. The record values, 1, 2, 3, 5, 6 and 8 occur at 1, 6, 28, 140, 270 and 672, the first 6 terms of this sequence.
-
h[n_] := n * DivisorSigma[0, n] / DivisorSigma[1, n]; hm = 0; s = {}; Do[h1 = h[n]; If[IntegerQ[h1] && h1 > hm, hm = h1; AppendTo[s, n]], {n, 1, 10^6}]; s
A359964
Refactorable numbers (A033950) having more divisors than all smaller refactorable numbers.
Original entry on oeis.org
1, 2, 8, 12, 24, 36, 60, 180, 240, 360, 720, 1260, 1680, 3360, 5040, 10080, 15120, 20160, 25200, 30240, 55440, 100800, 110880, 221760, 277200, 443520, 665280, 720720, 1108800, 1441440, 2494800, 2882880, 3603600, 5765760, 8648640, 12972960, 14414400, 25945920, 28828800
Offset: 1
-
seq[nmax_] := Module[{s = {}, dm = 0, d}, Do[d = DivisorSigma[0, n]; If[d > dm && Divisible[n, d], dm = d; AppendTo[s, n]], {n, 1, nmax}]; s]; seq[10^6]
-
lista(nmax) = {my(dm = 0, d); for(n = 1, nmax, d = numdiv(n); if(d > dm && n%d == 0, dm = d; print1(n, ", "))); }
A335318
Harmonic numbers (A001599) k with a record abundancy index sigma(k)/k.
Original entry on oeis.org
1, 6, 140, 270, 672, 8190, 30240, 332640, 14303520, 17428320, 27027000, 191711520, 2144862720, 3506025600, 5943057120, 14378364000, 45578332800, 288662774400, 505159855200, 2020639420800, 10680522652800, 54557264361600
Offset: 1
The first 7 harmonic numbers are 1, 6, 28, 140, 270, 496 and 672. Their abundancy indices are 1, 2, 2, 2.4, 2.666..., 2 and 3. The record values, 1, 2, 2.4, 2.666... and 3 occur at 1, 6, 140, 270 and 672, the first 5 terms of this sequence.
-
rm = 0; s = {}; Do[h = DivisorSigma[0, n]/(r = DivisorSigma[1, n]/n); If[IntegerQ[h] && r > rm, rm = r; AppendTo[s, n]], {n, 1, 10^6}]; s
A335388
Harmonic numbers (A001599) with a record number of divisors that are harmonic numbers.
Original entry on oeis.org
1, 6, 140, 672, 30240, 332640, 2178540, 17428320, 163390500, 191711520, 326781000, 1307124000, 2701389600, 8104168800, 14378364000, 40520844000, 1175104476000, 7131668544000, 49921679808000
Offset: 1
1 has one divisor which is a harmonic number: 1. 6 has 2 divisors which are harmonic numbers: 1 and 6. The next harmonic number with more than 2 divisors which are harmonic numbers is 140 with 3 such divisors: 1, 28 and 140.
-
h = Cases[Import["https://oeis.org/A001599/b001599.txt", "Table"], {, }][[;; , 2]]; hQ[n_] := Divisible[n * DivisorSigma[0, n], DivisorSigma[1, n]]; hsigma[n_] := DivisorSum[n, Boole @ hQ[#] &]; hm = 0; s = {}; Do[h1 = hsigma[h[[k]]]; If[h1 > hm, hm = h1; AppendTo[s, h[[k]]]], {k, 1, Length[h]}]; s
A353040
Unitary harmonic numbers (A006086) with a record number of unitary divisors.
Original entry on oeis.org
1, 6, 60, 420, 5460, 791700, 93284100, 3915147600, 285805774800
Offset: 1
The first 6 unitary harmonic numbers are 1, 6, 45, 60, 90, and 420. Their numbers of unitary divisors (A034444) are 1, 4, 4, 8, 8 and 16. The record values, 1, 4, 8 and 16 occur at 1, 6, 60 and 420, the first 4 terms of this sequence.
-
f[p_, e_] := 2 * p^e/(p^e + 1); r[n_] := Times @@ f @@@ FactorInteger[n]; dm = 0; s = {}; Do[h = r[n]; If[IntegerQ[h] && (d = 2^PrimeNu[n]) > dm, dm = d; AppendTo[s, n]], {n, 1, 10^6}]; s
A364726
Admirable numbers with more divisors than any smaller admirable number.
Original entry on oeis.org
12, 24, 84, 120, 672, 24384, 43065, 78975, 81081, 261261, 523776, 9124731, 13398021, 69087249, 91963648, 459818240, 39142675143, 51001180160
Offset: 1
-
admQ[n_] := (ab = DivisorSigma[1, n] - 2 n) > 0 && EvenQ[ab] && ab/2 < n && Divisible[n, ab/2];
seq[kmax_] := Module[{s = {}, dm = 0, d1}, Do[d1 = DivisorSigma[0, k]; If[d1 > dm && admQ[k], dm = d1; AppendTo[s, k]], {k, 1, kmax}]; s]; seq[10^6]
-
isadm(n) = {my(ab=sigma(n)-2*n); ab>0 && ab%2 == 0 && ab/2 < n && n%(ab/2) == 0;}
lista(kmax) = {my(dm = 0, d1); for(k = 1, kmax, d1 = numdiv(k); if(d1 > dm && isadm(k), dm = d1; print1(k,", ")));}
Showing 1-7 of 7 results.
Comments