A335341 Sum of divisors of A003557(n).
1, 1, 1, 3, 1, 1, 1, 7, 4, 1, 1, 3, 1, 1, 1, 15, 1, 4, 1, 3, 1, 1, 1, 7, 6, 1, 13, 3, 1, 1, 1, 31, 1, 1, 1, 12, 1, 1, 1, 7, 1, 1, 1, 3, 4, 1, 1, 15, 8, 6, 1, 3, 1, 13, 1, 7, 1, 1, 1, 3, 1, 1, 4, 63, 1, 1, 1, 3, 1, 1, 1, 28, 1, 1, 6, 3, 1, 1, 1
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16383
- Antti Karttunen, Data supplement: n, a(n) computed for n = 1..65537
Crossrefs
Programs
-
Maple
A335341 := proc(n) local a,pe,p,e ; a := 1; for pe in ifactors(n)[2] do p := op(1,pe) ; e := op(2,pe) ; if e > 1 then a := a*(p^e-1)/(p-1) ; end if; end do: a ; end proc:
-
Mathematica
f[p_, e_] := (p^e-1)/(p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 26 2020 *)
-
PARI
a(n) = sigma(n/factorback(factor(n)[, 1])); \\ Michel Marcus, Jun 02 2020
Formula
Multiplicative with a(p^1)=1 and a(p^e) = (p^e-1)/(p-1) if e>1.
a(n) = 1 iff n in A005117.
Dirichlet g.f.: zeta(s-1) * zeta(s) * Product_{p prime} (1 - 1/p^(s-1) + 1/p^(2*s-1)). - Amiram Eldar, Sep 09 2023
Comments