cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A335438 Number of partitions of k_n into two distinct parts (s,t) such that k_n | s*t, where k_n = A335437(n).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 1, 1, 3, 2, 1, 1, 3, 2, 2, 1, 4, 1, 1, 3, 1, 4, 2, 1, 1, 5, 2, 1, 3, 1, 5, 3, 2, 1, 1, 4, 6, 1, 2, 1, 2, 1, 3, 6, 1, 4, 1, 1, 2, 1, 7, 1, 1, 5, 4, 3, 2, 2, 7, 1, 1, 1, 2, 1, 5, 8, 3, 1, 4, 1, 1, 1, 3, 8, 2, 1, 1, 6, 1, 3, 2, 1, 1, 2, 9, 5, 1, 1, 2, 1, 3
Offset: 1

Views

Author

Wesley Ivan Hurt, Jun 10 2020

Keywords

Comments

a(n) >= 1.

Examples

			a(2) = 1; A335437(2) = 16 has exactly one partition into two distinct parts (12,4), such that 16 | 12*4 = 48. Therefore, a(2) = 1.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local F,beta,t;
         F:= ifactors(n)[2];
         beta:= mul(t[1]^floor(t[2]/2),t=F);
         if beta <= 2 then NULL else floor((beta-1)/2) fi
    end proc:
    map(f, [$1..500]); # Robert Israel, Dec 23 2024
  • Mathematica
    Table[If[Sum[(1 - Ceiling[(i*(n - i))/n] + Floor[(i*(n - i))/n]), {i, Floor[(n - 1)/2]}] > 0, Sum[(1 - Ceiling[(i*(n - i))/n] + Floor[(i*(n - i))/n]), {i, Floor[(n - 1)/2]}], {}], {n, 400}] // Flatten

Formula

a(n) = floor((A000188(A335437(n))-1)/2). - Robert Israel, Dec 23 2024

A258211 Nonsquarefree numbers of the form 4*k + 2.

Original entry on oeis.org

18, 50, 54, 90, 98, 126, 150, 162, 198, 234, 242, 250, 270, 294, 306, 338, 342, 350, 378, 414, 450, 486, 490, 522, 550, 558, 578, 594, 630, 650, 666, 686, 702, 722, 726, 738, 750, 774, 810, 846, 850, 882, 918, 950, 954, 990, 1014, 1026, 1050, 1058, 1062, 1078, 1098, 1134, 1150
Offset: 1

Views

Author

Juri-Stepan Gerasimov, May 23 2015

Keywords

Comments

The asymptotic density of this sequence is 1/4 - 2/Pi^2 = 0.047357... (A190357) - Amiram Eldar, Feb 10 2021
From Peter Munn, Jan 20 2022: (Start)
Even numbers whose square part is odd (and nontrivial).
If m is in the sequence then every odd multiple of m is in the sequence.
Closed under the operation A059896(.,.).
(End)

Examples

			18 is in this sequence because 4 * 4 + 2 = 18 = 2 * 3^2.
		

Crossrefs

Intersection of A016825 and either A013929 or A335437.

Programs

  • Magma
    [n*4+2: n in [1..300] | not IsSquarefree(4*n+2)];
    
  • Maple
    remove(numtheory:-issqrfree, [4*i+2 $ i=0..1000]); # Robert Israel, May 27 2015
  • Mathematica
    Select [Range[300], ! SquareFreeQ[(4 # - 2)] &] 4 - 2 (* Vincenzo Librandi, May 24 2015 *)
  • PARI
    select(n->!issquarefree(n), vector(50,n,2*n+9))*2 \\ Charles R Greathouse IV, May 26 2015

Formula

a(n) = 2*A053850(n). - Charles R Greathouse IV, May 26 2015
Showing 1-2 of 2 results.