cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 51 results. Next

A335456 Number of normal patterns matched by compositions of n.

Original entry on oeis.org

1, 2, 5, 12, 32, 84, 211, 556, 1446, 3750, 9824, 25837, 67681, 178160, 468941, 1233837, 3248788, 8554709
Offset: 0

Views

Author

Gus Wiseman, Jun 16 2020

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n.
We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Examples

			The 8 compositions of 4 together with the a(4) = 32 patterns they match:
  4:   31:   13:   22:   211:   121:   112:   1111:
-----------------------------------------------------
  ()   ()    ()    ()    ()     ()     ()     ()
  (1)  (1)   (1)   (1)   (1)    (1)    (1)    (1)
       (21)  (12)  (11)  (11)   (11)   (11)   (11)
                         (21)   (12)   (12)   (111)
                         (211)  (21)   (112)  (1111)
                                (121)
		

Crossrefs

References found in the link are not all included here.
The version for standard compositions is A335454.
The contiguous case is A335457.
The version for Heinz numbers of partitions is A335549.
Patterns are counted by A000670 and ranked by A333217.
The n-th composition has A124771(n) distinct consecutive subsequences.
Knapsack compositions are counted by A325676 and ranked by A333223.
The n-th composition has A333257(n) distinct subsequence-sums.
The n-th composition has A334299(n) distinct subsequences.
Minimal patterns avoided by a standard composition are counted by A335465.

Programs

  • Mathematica
    mstype[q_]:=q/.Table[Union[q][[i]]->i,{i,Length[Union[q]]}];
    Table[Sum[Length[Union[mstype/@Subsets[y]]],{y,Join@@Permutations/@IntegerPartitions[n]}],{n,0,8}]

Extensions

a(14)-a(16) from Jinyuan Wang, Jun 26 2020
a(17) from John Tyler Rascoe, Mar 14 2025

A335452 Number of separations (Carlitz compositions or anti-runs) of the prime indices of n.

Original entry on oeis.org

1, 1, 1, 0, 1, 2, 1, 0, 0, 2, 1, 1, 1, 2, 2, 0, 1, 1, 1, 1, 2, 2, 1, 0, 0, 2, 0, 1, 1, 6, 1, 0, 2, 2, 2, 2, 1, 2, 2, 0, 1, 6, 1, 1, 1, 2, 1, 0, 0, 1, 2, 1, 1, 0, 2, 0, 2, 2, 1, 6, 1, 2, 1, 0, 2, 6, 1, 1, 2, 6, 1, 1, 1, 2, 1, 1, 2, 6, 1, 0, 0, 2, 1, 6, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Jun 21 2020

Keywords

Comments

The first term that is not a factorial number is a(180) = 12.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A separation (or Carlitz composition) of a multiset is a permutation with no adjacent equal parts.
a(n) depends only on the prime signature of n. - Andrew Howroyd, Feb 03 2021

Examples

			The a(n) separations for n = 2, 6, 30, 180:
  (1)  (12)  (123)  (12123)
       (21)  (132)  (12132)
             (213)  (12312)
             (231)  (12321)
             (312)  (13212)
             (321)  (21213)
                    (21231)
                    (21312)
                    (21321)
                    (23121)
                    (31212)
                    (32121)
		

Crossrefs

Separations are counted by A003242 and ranked by A333489.
Patterns are counted by A000670 and ranked by A333217.
Permutations of prime indices are counted by A008480.
Inseparable partitions are counted by A325535 and ranked by A335448.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Select[Permutations[primeMS[n]],!MatchQ[#,{_,x_,x_,_}]&]],{n,100}]
  • PARI
    F(i, j, r, t) = {sum(k=max(0, i-j), min(min(i,t), (i-j+t)\2), binomial(i, k)*binomial(r-i+1, t+i-j-2*k)*binomial(t-1, k-i+j))}
    count(sig)={my(s=vecsum(sig), r=0, v=[1]); for(p=1, #sig, my(t=sig[p]); v=vector(s-r-t+1, j, sum(i=1, #v, v[i]*F(i-1, j-1, r, t))); r += t); v[1]}
    a(n)={count(factor(n)[,2])} \\ Andrew Howroyd, Feb 03 2021

A374249 Numbers k such that the k-th composition in standard order has its equal parts contiguous.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 26, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 47, 48, 50, 52, 56, 58, 60, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 78, 79, 80, 81, 83, 84, 85
Offset: 1

Views

Author

Gus Wiseman, Jul 13 2024

Keywords

Comments

These are compositions avoiding the patterns (1,2,1) and (2,1,2).
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The terms together with their standard compositions begin:
   0: ()
   1: (1)
   2: (2)
   3: (1,1)
   4: (3)
   5: (2,1)
   6: (1,2)
   7: (1,1,1)
   8: (4)
   9: (3,1)
  10: (2,2)
  11: (2,1,1)
  12: (1,3)
  14: (1,1,2)
  15: (1,1,1,1)
  16: (5)
See A374253 for the complement: 13, 22, 25, 27, 29, ...
		

Crossrefs

The strict (also anti-run) case is A233564, counted by A032020.
Compositions of this type are counted by A274174.
Permutations of prime indices of this type are counted by A333175.
The complement is A374253 (anti-run A374254), counted by A335548.
A003242 counts anti-run compositions, ranks A333489.
A011782 counts compositions.
A066099 lists compositions in standard order.
A124767 counts runs in standard compositions, anti-runs A333381.
A333755 counts compositions by number of runs.
A335454 counts patterns matched by standard compositions.
A335462 counts (1,2,1)- and (2,1,2)-matching permutations of prime indices.
- A335470 counts (1,2,1)-matching compositions, ranks A335466.
- A335471 counts (1,2,1)-avoiding compositions, ranks A335467.
- A335472 counts (2,1,2)-matching compositions, ranks A335468.
- A335473 counts (2,1,2)-avoiding compositions, ranks A335469.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],UnsameQ@@First/@Split[stc[#]]&]

Formula

Equals A335467 /\ A335469.

A335465 Number of minimal normal patterns avoided by the n-th composition in standard order (A066099).

Original entry on oeis.org

1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 12, 4, 3, 3, 3, 3, 4, 3, 4, 12, 4, 3, 12, 4, 12, 4, 12, 4, 3, 3, 3, 3, 4, 3, 3, 6, 4, 3, 6, 3, 3, 6, 10, 10, 4, 3, 12, 6, 12, 3, 10, 10, 12, 4, 12, 3, 12, 4, 12, 4, 3, 3, 3, 3, 4, 3, 3, 6
Offset: 0

Views

Author

Gus Wiseman, Jun 20 2020

Keywords

Comments

These patterns comprise the basis of the class of patterns generated by this composition.
We define a (normal) pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The bases of classes generated by (), (1), (2,1,1), (3,1,2), (2,1,2,1), and (1,2,1), corresponding to n = 0, 1, 11, 38, 45, 13, are the respective columns below.
  (1)  (1,1)  (1,2)    (1,1)    (1,1,1)    (1,1,1)
       (1,2)  (1,1,1)  (1,2,3)  (1,1,2)    (1,1,2)
       (2,1)  (2,2,1)  (1,3,2)  (1,2,2)    (1,2,2)
              (3,2,1)  (2,1,3)  (1,2,3)    (1,2,3)
                       (2,3,1)  (1,3,2)    (1,3,2)
                       (3,2,1)  (2,1,3)    (2,1,1)
                                (2,3,1)    (2,1,2)
                                (3,1,2)    (2,1,3)
                                (3,2,1)    (2,2,1)
                                (2,2,1,1)  (2,3,1)
                                           (3,1,2)
                                           (3,2,1)
		

Crossrefs

Patterns matched by standard compositions are counted by A335454.
Patterns matched by compositions of n are counted by A335456(n).
The version for Heinz numbers of partitions is A335550.
Patterns are counted by A000670 and ranked by A333217.
Knapsack compositions are counted by A325676 and ranked by A333223.
The n-th composition has A334299(n) distinct subsequences.

A335458 Number of normal patterns contiguously matched by the n-th composition in standard order (A066099).

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 5, 3, 5, 5, 5, 2, 3, 3, 5, 3, 5, 5, 7, 3, 5, 5, 8, 5, 8, 7, 6, 2, 3, 3, 5, 3, 4, 5, 7, 3, 5, 4, 7, 5, 7, 8, 9, 3, 5, 5, 8, 4, 8, 7, 11, 5, 8, 7, 11, 7, 11, 9, 7, 2, 3, 3, 5, 3, 4, 5, 7, 3, 5, 5, 7, 5, 7, 8, 9, 3, 5, 5, 8, 5, 7
Offset: 0

Views

Author

Gus Wiseman, Jun 21 2020

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
We define a (normal) pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Examples

			The a(180) = 7 patterns are: (), (1), (1,2), (2,1), (1,2,3), (2,1,2), (2,1,2,3).
		

Crossrefs

The non-contiguous version is A335454.
Summing over indices with binary length n gives A335457(n).
The nonempty version is A335474.
Patterns are counted by A000670 and ranked by A333217.
The n-th composition has A124771(n) distinct consecutive subsequences.
Knapsack compositions are counted by A325676 and ranked by A333223.
The n-th composition has A333257(n) distinct subsequence-sums.
The n-th composition has A334299(n) distinct subsequences.
Minimal avoided patterns are counted by A335465.

Programs

  • Mathematica
    stc[n_]:=Reverse[Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]];
    mstype[q_]:=q/.Table[Union[q][[i]]->i,{i,Length[Union[q]]}];
    Table[Length[Union[mstype/@ReplaceList[stc[n],{_,s___,_}:>{s}]]],{n,0,30}]

Formula

a(n) = A335474(n) + 1.

A335460 Number of (1,2,1) or (2,1,2)-matching permutations of the prime indices of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 2, 0, 0, 0, 1, 1, 0, 0, 3, 0, 1, 0, 1, 0, 2, 0, 2, 0, 0, 0, 6, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 8, 0, 0, 1, 1, 0, 0, 0, 3, 0, 0, 0, 6, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Jun 20 2020

Keywords

Comments

Depends only on sorted prime signature (A118914).
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Examples

			The a(n) compositions for n = 12, 24, 48, 36, 60, 72:
  (121)  (1121)  (11121)  (1212)  (1213)  (11212)
         (1211)  (11211)  (1221)  (1231)  (11221)
                 (12111)  (2112)  (1312)  (12112)
                          (2121)  (1321)  (12121)
                                  (2131)  (12211)
                                  (3121)  (21112)
                                          (21121)
                                          (21211)
		

Crossrefs

Positions of zeros are A303554.
The (1,2,1)-matching part is A335446.
The (2,1,2)-matching part is A335453.
Replacing "or" with "and" gives A335462.
Permutations of prime indices are counted by A008480.
Unsorted prime signature is A124010. Sorted prime signature is A118914.
STC-numbers of permutations of prime indices are A333221.
(1,2,1) and (2,1,2)-avoiding permutations of prime indices are A333175.
Patterns matched by standard compositions are counted by A335454.
(1,2,1) and (2,1,2)-matching permutations of prime indices are A335462.
Dimensions of downsets of standard compositions are A335465.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Select[Permutations[primeMS[n]],MatchQ[#,{_,x_,_,y_,_,x_,_}/;x!=y]&]],{n,100}]

A335515 Number of patterns of length n matching the pattern (1,2,3).

Original entry on oeis.org

0, 0, 0, 1, 19, 257, 3167, 38909, 498235, 6811453, 100623211, 1612937661, 28033056683, 526501880989, 10639153638795, 230269650097469, 5315570416909995, 130370239796988957, 3385531348514480651, 92801566389186549245, 2677687663571344712043, 81124824154544921317597
Offset: 0

Views

Author

Gus Wiseman, Jun 19 2020

Keywords

Comments

We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Examples

			The a(3) = 1 through a(4) = 19 patterns:
  (1,2,3)  (1,1,2,3)
           (1,2,1,3)
           (1,2,2,3)
           (1,2,3,1)
           (1,2,3,2)
           (1,2,3,3)
           (1,2,3,4)
           (1,2,4,3)
           (1,3,2,3)
           (1,3,2,4)
           (1,3,4,2)
           (1,4,2,3)
           (2,1,2,3)
           (2,1,3,4)
           (2,3,1,4)
           (2,3,4,1)
           (3,1,2,3)
           (3,1,2,4)
           (4,1,2,3)
		

Crossrefs

The complement A226316 is the avoiding version.
Compositions matching this pattern are counted by A335514 and ranked by A335479.
Permutations of prime indices matching this pattern are counted by A335520.
Patterns are counted by A000670 and ranked by A333217.
Patterns matching the pattern (1,1) are counted by A019472.
Permutations matching (1,2,3) are counted by A056986.
Combinatory separations are counted by A269134.
Patterns matched by standard compositions are counted by A335454.
Minimal patterns avoided by a standard composition are counted by A335465.

Programs

  • Mathematica
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    Table[Length[Select[Join@@Permutations/@allnorm[n],MatchQ[#,{_,x_,_,y_,_,z_,_}/;x
    				
  • PARI
    seq(n)=Vec( serlaplace(1/(2-exp(x + O(x*x^n)))) - 1/2 - 1/(1+sqrt(1-8*x+8*x^2 + O(x*x^n))), -(n+1)) \\ Andrew Howroyd, Jan 28 2024

Formula

a(n) = A000670(n) - A226316(n). - Andrew Howroyd, Jan 28 2024

Extensions

a(9) onwards from Andrew Howroyd, Jan 28 2024

A374253 Numbers k such that the k-th composition in standard order matches the patterns (1,2,1) or (2,1,2).

Original entry on oeis.org

13, 22, 25, 27, 29, 45, 46, 49, 51, 53, 54, 55, 57, 59, 61, 76, 77, 82, 86, 89, 90, 91, 93, 94, 97, 99, 101, 102, 103, 105, 107, 108, 109, 110, 111, 113, 115, 117, 118, 119, 121, 123, 125, 141, 148, 150, 153, 155, 156, 157, 162, 165, 166, 173, 174, 177, 178
Offset: 1

Views

Author

Gus Wiseman, Jul 13 2024

Keywords

Comments

Such a composition cannot be strict.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The terms together with their standard compositions begin:
  13: (1,2,1)
  22: (2,1,2)
  25: (1,3,1)
  27: (1,2,1,1)
  29: (1,1,2,1)
  45: (2,1,2,1)
  46: (2,1,1,2)
  49: (1,4,1)
  51: (1,3,1,1)
  53: (1,2,2,1)
  54: (1,2,1,2)
  55: (1,2,1,1,1)
  57: (1,1,3,1)
  59: (1,1,2,1,1)
  61: (1,1,1,2,1)
  76: (3,1,3)
  77: (3,1,2,1)
  82: (2,3,2)
  86: (2,2,1,2)
  89: (2,1,3,1)
		

Crossrefs

Permutations of prime indices of this type are counted by A335460.
Compositions of this type are counted by A335548.
The complement is A374249, counted by A274174.
The anti-run case is A374254.
A003242 counts anti-run compositions, ranks A333489.
A011782 counts compositions.
A025047 counts wiggly compositions, ranks A345167.
A066099 lists compositions in standard order.
A124767 counts runs in standard compositions, anti-runs A333381.
A233564 ranks strict compositions, counted by A032020.
A333755 counts compositions by number of runs.
A335454 counts patterns matched by standard compositions.
A335456 counts patterns matched by compositions.
A335462 counts (1,2,1)- and (2,1,2)-matching permutations of prime indices.
A335465 counts minimal patterns avoided by a standard composition.
- A335470 counts (1,2,1)-matching compositions, ranks A335466.
- A335471 counts (1,2,1)-avoiding compositions, ranks A335467.
- A335472 counts (2,1,2)-matching compositions, ranks A335468.
- A335473 counts (2,1,2)-avoiding compositions, ranks A335469.
A373948 encodes run-compression using compositions in standard order.
A373949 counts compositions by run-compressed sum, opposite A373951.
A373953 gives run-compressed sum of standard compositions, excess A373954.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],!UnsameQ@@First/@Split[stc[#]]&]

Formula

Equals A335466 \/ A335468.

A335462 Number of (1,2,1) and (2,1,2)-matching permutations of the prime indices of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Jun 20 2020

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Examples

			The a(n) permutations for n = 36, 72, 270, 144, 300:
  (1,2,1,2)  (1,1,2,1,2)  (2,1,2,3,2)  (1,1,1,2,1,2)  (1,2,3,1,3)
  (2,1,2,1)  (1,2,1,1,2)  (2,1,3,2,2)  (1,1,2,1,1,2)  (1,3,1,2,3)
             (1,2,1,2,1)  (2,2,1,3,2)  (1,1,2,1,2,1)  (1,3,1,3,2)
             (2,1,1,2,1)  (2,2,3,1,2)  (1,2,1,1,1,2)  (1,3,2,1,3)
             (2,1,2,1,1)  (2,3,1,2,2)  (1,2,1,1,2,1)  (1,3,2,3,1)
                          (2,3,2,1,2)  (1,2,1,2,1,1)  (2,1,3,1,3)
                                       (2,1,1,1,2,1)  (2,3,1,3,1)
                                       (2,1,1,2,1,1)  (3,1,2,1,3)
                                       (2,1,2,1,1,1)  (3,1,2,3,1)
                                                      (3,1,3,1,2)
                                                      (3,1,3,2,1)
                                                      (3,2,1,3,1)
		

Crossrefs

The avoiding version is A333175.
Replacing "and" with "or" gives A335460.
Positions of nonzero terms are A335463.
Permutations of prime indices are counted by A008480.
Unsorted prime signature is A124010. Sorted prime signature is A118914.
STC-numbers of permutations of prime indices are A333221.
Patterns matched by standard compositions are counted by A335454.
Dimensions of downsets of standard compositions are A335465.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Select[Permutations[primeMS[n]],MatchQ[#,{_,x_,_,y_,_,x_,_}/;x_,x_,_,y_,_,x_,_}/;x>y]&]],{n,100}]

A335463 Numbers k such that there exists a permutation of the prime indices of k matching both (1,2,1) and (2,1,2).

Original entry on oeis.org

36, 72, 90, 100, 108, 126, 144, 180, 196, 198, 200, 216, 225, 234, 252, 270, 288, 300, 306, 324, 342, 350, 360, 378, 392, 396, 400, 414, 432, 441, 450, 468, 484, 500, 504, 522, 525, 540, 550, 558, 576, 588, 594, 600, 612, 630, 648, 650, 666, 675, 676, 684, 700
Offset: 1

Views

Author

Gus Wiseman, Jun 20 2020

Keywords

Comments

A prime index of k is a number m such that prime(m) divides k. The multiset of prime indices of k is row k of A112798.
We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Examples

			The sequence of terms together with their prime indices begins:
   36: {1,1,2,2}
   72: {1,1,1,2,2}
   90: {1,2,2,3}
  100: {1,1,3,3}
  108: {1,1,2,2,2}
  126: {1,2,2,4}
  144: {1,1,1,1,2,2}
  180: {1,1,2,2,3}
  196: {1,1,4,4}
  198: {1,2,2,5}
  200: {1,1,1,3,3}
  216: {1,1,1,2,2,2}
  225: {2,2,3,3}
  234: {1,2,2,6}
  252: {1,1,2,2,4}
  270: {1,2,2,2,3}
  288: {1,1,1,1,1,2,2}
  300: {1,1,2,3,3}
		

Crossrefs

Replacing "and" with "or" gives A126706.
Positions of nonzero terms in A335462.
Permutations of prime indices are counted by A008480.
Unsorted prime signature is A124010. Sorted prime signature is A118914.
STC-numbers of permutations of prime indices are A333221.
Patterns matched by standard compositions are counted by A335454.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Select[Permutations[primeMS[#]],MatchQ[#,{_,x_,_,y_,_,x_,_}/;x_,x_,_,y_,_,x_,_}/;x>y]&]!={}&]
Showing 1-10 of 51 results. Next