cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A367675 a(n) is the numerator of the probability that a particular one of the A335573(n+1) fixed polyominoes corresponding to the free polyomino with binary code A246521(n+1) appears in the version of the Eden growth model described in A367671 when n square cells have been added.

Original entry on oeis.org

1, 1, 1, 1, 5, 2, 23, 1, 1, 253, 5, 1, 23, 713, 11, 5, 149, 157, 5, 23, 1, 3671, 286417, 2, 73, 289, 1, 2657, 103, 289, 15923, 19067, 1, 1661, 1, 10019, 16591, 1, 323, 193, 1661, 1, 169, 14603, 71, 853, 11, 23, 1037, 27151, 15923, 23, 529, 487, 14267, 1
Offset: 1

Views

Author

Pontus von Brömssen, Nov 26 2023

Keywords

Comments

Can be read as an irregular triangle, whose n-th row contains A000105(n) terms, n >= 1.

Examples

			As an irregular triangle:
    1;
    1;
    1, 1;
    5, 2, 23,  1,   1;
  253, 5,  1, 23, 713, 11, 5, 149, 157, 5, 23, 1;
  ...
		

Crossrefs

Formula

a(n)/A367676(n) = (A367671(n)/A367672(n))/A335573(n+1).

A367676 a(n) is the denominator of the probability that a particular one of the A335573(n+1) fixed polyominoes corresponding to the free polyomino with binary code A246521(n+1) appears in the version of the Eden growth model described in A367671 when n square cells have been added.

Original entry on oeis.org

1, 2, 6, 6, 112, 21, 336, 21, 24, 8064, 504, 84, 2520, 40320, 1008, 504, 8064, 8064, 504, 672, 120, 399168, 39916800, 1155, 30240, 18144, 528, 241920, 26880, 36288, 4435200, 1814400, 480, 181440, 480, 2217600, 3991680, 528, 20736, 36288, 362880, 378, 110880, 4435200, 36960, 201600, 5040, 13860, 295680, 5702400, 4435200, 13860, 103680, 50400, 1814400, 720
Offset: 1

Views

Author

Pontus von Brömssen, Nov 26 2023

Keywords

Comments

Can be read as an irregular triangle, whose n-th row contains A000105(n) terms, n >= 1.
Terms on the n-th row are (2*n-1)-smooth.

Examples

			As an irregular triangle:
     1;
     2;
     6,   6;
   112,  21, 336,   21,    24;
  8064, 504,  84, 2520, 40320, 1008, 504, 8064, 8064, 504, 672, 120;
  ...
		

Crossrefs

Formula

A367675(n)/a(n) = (A367671(n)/A367672(n))/A335573(n+1).

A367764 a(n) is the numerator of the probability that a particular one of the A335573(n+1) fixed polyominoes corresponding to the free polyomino with binary code A246521(n+1) appears in the Eden growth model on the square lattice (see A367760), when n square cells have been added.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 7, 7, 1, 1, 1, 23, 49, 1, 1, 53, 1, 107, 1, 49, 1, 107, 1, 23, 1, 1, 1, 1, 137, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 7, 1, 2797, 70037, 70037, 31, 31, 2797, 3517, 1, 41, 653, 49541, 1, 3517, 71, 67, 41, 899, 2797, 653, 1, 1, 1, 1, 653, 1, 1
Offset: 1

Views

Author

Pontus von Brömssen, Dec 02 2023

Keywords

Comments

Apparently, the probabilities a(n)/A367765(n) are given in Eden (1958) for polyominoes up to 8 cells.
Can be read as an irregular triangle, whose n-th row contains A000105(n) terms, n >= 1.

Examples

			As an irregular triangle:
  1;
  1;
  1, 1;
  1, 1, 1, 1, 1;
  1, 1, 1, 1, 7, 1, 1, 7, 7, 1, 1, 1;
  ...
		

References

  • Murray Eden, A probabilistic model for morphogenesis, in: Symposium on Information Theory in Biology (Gatlinburg 1956), pp. 359-370, Pergamon Press, New York, 1958.

Crossrefs

Formula

a(n)/A367765(n) = (A367760(n)/A367761(n))/A335573(n+1).

A367765 a(n) is the denominator of the probability that a particular one of the A335573(n+1) fixed polyominoes corresponding to the free polyomino with binary code A246521(n+1) appears in the Eden growth model on the square lattice (see A367760), when n square cells have been added.

Original entry on oeis.org

1, 2, 6, 6, 24, 6, 16, 24, 24, 20, 120, 120, 120, 480, 120, 120, 480, 480, 120, 40, 120, 1800, 4800, 720, 720, 1200, 720, 7200, 384, 4800, 384, 7200, 720, 1800, 720, 320, 384, 720, 7200, 320, 384, 720, 720, 384, 720, 320, 720, 720, 384, 320, 384, 720, 320, 1920, 1440, 720
Offset: 1

Views

Author

Pontus von Brömssen, Dec 02 2023

Keywords

Comments

Can be read as an irregular triangle, whose n-th row contains A000105(n) terms, n >= 1.

Examples

			As an irregular triangle:
   1;
   2;
   6,   6;
  24,   6,  16,  24,  24;
  20, 120, 120, 120, 480, 120, 120, 480, 480, 120, 40, 120;
  ...
		

Crossrefs

Formula

A367764(n)/a(n) = (A367760(n)/A367761(n))/A335573(n+1).

A368000 a(n) is the numerator of the probability that a particular one of the A335573(n+1) fixed polyominoes corresponding to the free polyomino with binary code A246521(n+1) appears as the image of a simple random walk on the square lattice.

Original entry on oeis.org

1, 1, 1, 1, 1, 4, 1, 1, 1, 97, 1, 1, 1, 8, 1, 1, 8, 8, 1, 1, 1, 867, 9565, 1, 1, 2495, 1, 262781, 389, 9565, 389, 262781, 1, 867, 1, 597, 389, 1, 631381, 597, 389, 1, 1, 389, 1, 597, 1, 1, 389, 597, 389, 1, 597, 2501, 412, 1, 2635, 1706571966622, 1706571966622, 1117, 1117
Offset: 1

Views

Author

Pontus von Brömssen, Dec 09 2023

Keywords

Comments

In a simple random walk on the square lattice, draw a unit square around each visited point. a(n)/A368001(n) is the probability that, when the appropriate number of distinct points have been visited, the drawn squares form a particular one of the fixed polyominoes corresponding to the free polyomino with binary code A246521(n+1).
Can be read as an irregular triangle, whose n-th row contains A000105(n) terms, n >= 1.

Examples

			As an irregular triangle:
   1;
   1;
   1, 1;
   1, 4, 1, 1, 1;
  97, 1, 1, 1, 8, 1, 1, 8, 8, 1, 1, 1;
  ...
		

Crossrefs

Formula

a(n)/A368001(n) = (A367994(n)/A367995(n))/A335573(n+1).

A368001 a(n) is the denominator of the probability that a particular one of the A335573(n+1) fixed polyominoes corresponding to the free polyomino with binary code A246521(n+1) appears as the image of a simple random walk on the square lattice.

Original entry on oeis.org

1, 2, 6, 6, 21, 21, 28, 21, 21, 2002, 77, 77, 77, 1001, 77, 77, 1001, 1001, 77, 91, 77, 89089, 785603, 286, 286, 48594, 286, 25924899, 194194, 785603, 194194, 25924899, 286, 89089, 286, 388388, 194194, 286, 51849798, 388388, 194194, 286, 286, 194194, 286, 388388, 286, 286, 194194, 388388, 194194, 286, 388388, 1165164, 291291, 286
Offset: 1

Views

Author

Pontus von Brömssen, Dec 09 2023

Keywords

Comments

In a simple random walk on the square lattice, draw a unit square around each visited point. A368000(n)/a(n) is the probability that, when the appropriate number of distinct points have been visited, the drawn squares form a particular one of the fixed polyominoes corresponding to the free polyomino with binary code A246521(n+1).
Can be read as an irregular triangle, whose n-th row contains A000105(n) terms, n >= 1.

Examples

			As an irregular triangle:
     1;
     2;
     6,  6;
    21, 21, 28, 21,   21;
  2002, 77, 77, 77, 1001, 77, 77, 1001, 1001, 77, 91, 77;
  ...
		

Crossrefs

Formula

A368000(n)/a(n) = (A367994(n)/A367995(n))/A335573(n+1).

A368392 a(n) is the numerator of the probability that a particular one of the A335573(n+1) fixed polyominoes corresponding to the free polyomino with binary code A246521(n+1) appears in internal diffusion-limited aggregation on the square lattice.

Original entry on oeis.org

1, 1, 1, 1, 1, 4, 17, 1, 1, 57, 5, 5, 5, 73, 5, 5, 73, 73, 5, 1, 5, 49321, 28165117, 5, 5, 169, 5, 123019, 63425, 28165117, 63425, 123019, 5, 49321, 5, 74999, 63425, 5, 58604629, 74999, 63425, 5, 5, 63425, 5, 74999, 5, 5, 63425, 74999, 63425, 5, 74999, 5000341, 32385, 5
Offset: 1

Views

Author

Pontus von Brömssen, Dec 22 2023

Keywords

Comments

See A368386 for details.
Can be read as an irregular triangle, whose n-th row contains A000105(n) terms, n >= 1.

Examples

			As an irregular triangle:
   1;
   1;
   1, 1;
   1, 4, 17, 1,  1;
  57, 5,  5, 5, 73, 5, 5, 73, 73, 5, 1, 5;
  ...
		

Crossrefs

Cf. A000105, A246521, A335573, A367675, A367764, A368000, A368386, A368387, A368393 (denominators), A368394, A368863 (external diffusion-limited aggregation).

Formula

a(n)/A368393(n) = (A368386(n)/A368387(n))/A335573(n+1).

A368393 a(n) is the denominator of the probability that a particular one of the A335573(n+1) fixed polyominoes corresponding to the free polyomino with binary code A246521(n+1) appears in internal diffusion-limited aggregation on the square lattice.

Original entry on oeis.org

1, 2, 6, 6, 35, 35, 140, 35, 35, 1232, 1848, 1848, 1848, 3696, 1848, 1848, 3696, 3696, 1848, 7, 1848, 7386288, 3940584648, 38038, 38038, 5073, 38038, 7217188, 59034976, 3940584648, 59034976, 7217188, 38038, 7386288, 38038, 22138116, 59034976, 38038, 985146162, 22138116, 59034976, 38038, 38038, 59034976, 38038, 22138116, 38038, 38038, 59034976, 22138116, 59034976, 38038, 22138116, 177104928, 3689686, 38038
Offset: 1

Views

Author

Pontus von Brömssen, Dec 22 2023

Keywords

Comments

See A368386 for details.
Can be read as an irregular triangle, whose n-th row contains A000105(n) terms, n >= 1.

Examples

			As an irregular triangle:
     1;
     2;
     6,    6;
    35,   35,  140,   35,   35;
  1232, 1848, 1848, 1848, 3696, 1848, 1848, 3696, 3696, 1848, 7, 1848;
  ...
		

Crossrefs

Cf. A000105, A246521, A335573, A367676, A367765, A368001, A368386, A368387, A368392 (numerators), A368395, A368863 (external diffusion-limited aggregation).

Formula

A368392(n)/a(n) = (A368386(n)/A368387(n))/A335573(n+1).

A368863 Square array read by antidiagonals; the n-th row is the decimal expansion of the probability that a particular one of the A335573(n+1) fixed polyominoes corresponding to the free polyomino with binary code A246521(n+1) appears in diffusion-limited aggregation on the square lattice.

Original entry on oeis.org

1, 0, 0, 0, 5, 0, 0, 0, 1, 0, 0, 0, 4, 2, 0, 0, 0, 3, 1, 0, 0, 0, 0, 1, 3, 5, 0, 0, 0, 0, 7, 6, 3, 5, 0, 0, 0, 0, 1, 5, 3, 4, 5, 0, 0, 0, 0, 8, 6, 1, 6, 1, 3, 0, 0, 0, 0, 7, 2, 1, 2, 0, 7, 8, 0, 0, 0, 0, 2, 5, 7, 9, 7, 9, 1, 1, 0, 0, 0, 0, 2, 5, 4, 4, 5, 4, 3, 6, 1, 0, 0
Offset: 1

Views

Author

Pontus von Brömssen, Jan 08 2024

Keywords

Comments

The n-th row is the decimal expansion of the number on the n-th row of A368660 divided by A335573(n+1). See A368660 for details.
Rows A130866(k-1)+1 to A130866(k) correspond to k-celled polyominoes, k >= 2.

Examples

			Array begins:
  1.00000000000000000000... (monomino)
  0.50000000000000000000... (domino)
  0.14317187227209462175... (L tromino)
  0.21365625545581075649... (I tromino)
  0.05331174468766310877... (L tetromino)
  0.05462942885357382723... (square tetromino)
  0.05107523273680265528... (T tetromino)
  0.03794485956843370668... (S tetromino)
  0.08139812221208792734... (I tetromino)
  0.01652391644265825925... (P pentomino)
  0.01709341200261444870... (V pentomino)
  0.00933365290110550590... (W pentomino)
  0.01825698429438352158... (L pentomino)
  0.01973313069852314774... (Y pentomino)
  0.01316184592639931744... (N pentomino)
  0.01069856796007681265... (U pentomino)
  0.02067501830899727807... (T pentomino)
  0.01358243200363682514... (F pentomino)
  0.01232428737930631004... (Z pentomino)
  0.01279646275569121440... (X pentomino)
  0.02831865405554939733... (I pentomino)
  ...
		

Crossrefs

Cf. A000105, A001168, A130866, A246521, A335573, A368660 (free polyominoes), A368864, A368865.
Corresponding sequences for internal diffusion-limited aggregation: A368392, A368393.

A368386 a(n) is the numerator of the probability that the free polyomino with binary code A246521(n+1) appears in internal diffusion-limited aggregation on the square lattice.

Original entry on oeis.org

1, 1, 2, 1, 8, 4, 17, 4, 2, 57, 5, 5, 5, 73, 5, 5, 73, 73, 5, 1, 5, 49321, 28165117, 20, 20, 338, 20, 246038, 63425, 28165117, 63425, 123019, 20, 49321, 20, 149998, 63425, 20, 117209258, 74999, 63425, 10, 20, 63425, 20, 74999, 10, 10, 63425, 149998, 63425, 10, 149998, 5000341, 64770, 5
Offset: 1

Views

Author

Pontus von Brömssen, Dec 22 2023

Keywords

Comments

In internal diffusion-limited aggregation on the square lattice, there is one initial cell in the origin. In each subsequent step, a new cell is added by starting a random walk at the origin, adding the first new cell visited. a(n)/A368387(n) is the probability that, when the appropriate number of cells have been added, those cells form the free polyomino with binary code A246521(n+1).
Can be read as an irregular triangle, whose n-th row contains A000105(n) terms, n >= 1.

Examples

			As an irregular triangle:
   1;
   1;
   2, 1;
   8, 4, 17, 4,  2;
  57, 5,  5, 5, 73, 5, 5, 73, 73, 5, 1, 5;
  ...
There are only one monomino and one free domino, so both of these appear with probability 1, and a(1) = a(2) = 1.
For three squares, the probability for an L (or right) tromino (whose binary code is 7 = A246521(4)) is 2/3, so a(3) = 2. The probability for the straight tromino (whose binary code is 11 = A246521(5)) is 1/3, so a(4) = 1.
		

Crossrefs

Cf. A000105, A246521, A335573, A367671, A367760, A367994, A368387 (denominators), A368388, A368390, A368392, A368393, A368660 (external diffusion-limited aggregation).

Formula

a(n)/A368387(n) = (A368392(n)/A368393(n))*A335573(n+1).
Showing 1-10 of 17 results. Next