A331410 a(n) is the number of iterations needed to reach a power of 2 starting at n and using the map k -> k + k/p, where p is the largest prime factor of k.
0, 0, 1, 0, 2, 1, 1, 0, 2, 2, 2, 1, 2, 1, 3, 0, 3, 2, 3, 2, 2, 2, 2, 1, 4, 2, 3, 1, 4, 3, 1, 0, 3, 3, 3, 2, 4, 3, 3, 2, 3, 2, 3, 2, 4, 2, 2, 1, 2, 4, 4, 2, 4, 3, 4, 1, 4, 4, 4, 3, 2, 1, 3, 0, 4, 3, 4, 3, 3, 3, 3, 2, 5, 4, 5, 3, 3, 3, 3, 2, 4, 3, 3, 2, 5, 3, 5, 2, 5, 4, 3, 2, 2, 2, 5, 1, 3, 2, 4, 4, 5, 4, 3, 2, 4
Offset: 1
Keywords
Examples
The trajectory of 15 is [15,18,24,32], taking 3 iterations to reach 32. So, a(15) = 3.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
- Michael De Vlieger, Annotated fan style binary tree of a(n) labeling the index n and applying a color code where black represents a(n) = 0, red a(n) = 1, and magenta the largest value of a(n) for n = 1..16383.
Crossrefs
Programs
-
Magma
f:=func
; g:=func ; a:=[]; for n in [1..1000] do k:=n; s:=0; while not g(k) do s:=s+1; k:=f(k); end while; Append(~a,s); end for; a; // Marius A. Burtea, Jan 19 2020 -
Mathematica
a[n_] := -1 + Length @ NestWhileList[# + #/FactorInteger[#][[-1, 1]] &, n, # / 2^IntegerExponent[#, 2] != 1 &]; Array[a, 100] (* Amiram Eldar, Jan 16 2020 *)
-
PARI
A331410(n) = if(!bitand(n,n-1),0,1+A331410(n+(n/vecmax(factor(n)[, 1])))); \\ Antti Karttunen, Apr 29 2020
-
PARI
A331410(n) = { my(k=0); while(bitand(n,n-1), k++; my(f=factor(n)[, 1]); n += (n/f[2-(n%2)])); (k); }; \\ Antti Karttunen, Apr 29 2020
-
PARI
A331410(n) = { my(f=factor(n)); sum(k=1,#f~,if(2==f[k,1],0,f[k,2]*(1+A331410(1+f[k,1])))); }; \\ Antti Karttunen, Apr 30 2020
Formula
From Antti Karttunen, Apr 29 2020: (Start)
This is a completely additive sequence: a(2) = 0, a(p) = 1+a(p+1) for odd primes p, a(m*n) = a(m)+a(n), if m,n > 1.
a(2n) = a(A000265(n)) = a(n).
If A209229(n) == 1, a(n) = 0, otherwise a(n) = 1 + a(n+A052126(n)), or equally, 1 + a(n+(n/A078701(n))).
(End)
Extensions
Data section extended up to a(105) by Antti Karttunen, Apr 29 2020
Comments