cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336191 Numbers k of the form k = ab (the decimal concatenation of a and b) such that phi(ab) = a*b + 1.

Original entry on oeis.org

57, 195, 319, 5595, 11709, 77097, 114765, 1313667, 1348559, 4752465, 10219099, 11031119, 185573199, 2918945715, 3165616929, 12233666703, 16996664613, 18052811909, 20650199699, 38081370319, 58943659521, 195823876095, 236323024041, 242687655369, 342764528277, 677924155713
Offset: 1

Views

Author

M. Farrokhi D. G., Jul 11 2020

Keywords

Comments

Is the sequence infinite?

Examples

			phi(57) = 5 * 7 + 1
phi(195) = 1 * 95 + 1 = 19 * 5 + 1
phi(319) = 31 * 9 + 1
phi(5595) = 5 * 595 + 1
phi(11709) = 11 * 709 + 1
phi(77097) = 7 * 7097 + 1
phi(114765) = 11 * 4765 + 1
phi(1313667) = 1313 * 667 + 1
phi(1348559) = 134855 * 9 + 1
phi(4752465) = 47 * 52465 + 1
phi(10219099) = 1021 * 9099 + 1
phi(11031119) = 1103111 * 9 + 1
phi(185573199) = 185 * 573199 + 1
		

Crossrefs

Programs

  • Mathematica
    seqQ[n_] := Module[{d = IntegerDigits[n]}, MemberQ[Times @@@ Table[FromDigits /@ {Take[d, k], Take[d, -Length[d] + k]}, {k, 1, Length[d] - 1}], EulerPhi[n] - 1]]; Select[Range[10, 10^5], seqQ] (* Amiram Eldar, Jul 11 2020 *)
  • PARI
    isok(m) = {my(tm=eulerphi(m)-1, d=digits(m)); for (i=1, #d-1, if (fromdigits(vector(i, k, d[k]))*fromdigits(vector(#d-i, k, d[i+k])) == tm, return(1)););} \\ Michel Marcus, Jul 11 2020

Extensions

Missing terms 1348559 & 4752465, and a(12) from Amiram Eldar, Jul 11 2020
More terms from Giovanni Resta, Jul 13 2020