cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A336188 a(n) = Sum_{k=0..n} n^k * binomial(n,k)^n.

Original entry on oeis.org

1, 2, 13, 352, 38401, 16971876, 29359436149, 207003074670848, 5679112509686022145, 636468045901197095750500, 277939985126193076692203962501, 494649880078824954885176565423811200, 3447375085398645453825889951638344722092289, 97424105704407389799712313421357308088296084669504
Offset: 0

Views

Author

Seiichi Manyama, Jul 11 2020

Keywords

Crossrefs

Programs

  • Magma
    [(&+[n^j*Binomial(n,j)^n: j in [0..n]]): n in [0..20]]; // G. C. Greubel, Aug 26 2022
    
  • Mathematica
    Unprotect[Power]; 0^0 = 1; a[n_] := Sum[n^k * Binomial[n, k]^n, {k, 0, n} ]; Array[a, 14, 0] (* Amiram Eldar, Jul 11 2020 *)
  • PARI
    {a(n) = sum(k=0, n, n^k*binomial(n, k)^n)}
    
  • SageMath
    [sum(n^j*binomial(n,j)^n for j in (0..n)) for n in (0..20)] # G. C. Greubel, Aug 26 2022

Formula

Let f(n) = 2^((n+1)*(2*n-1)/2) * n^(log(n)/8) / Pi^((n-1)/2). For sufficiently large n 0.7675... < a(n)/f(n) < 0.7900... - Vaclav Kotesovec, Jul 11 2020
The above bounds of Vaclav Kotesovec can be recast as: |a(n)/f(n) - exp(-1/4)| <= (3*Pi)^(-2) for sufficiently large n. - Peter Luschny, Jul 12 2020
a(n) ~ exp(-1/4) * QPochhammer(exp(-4)) * QPochhammer(-n*exp(-2), exp(-4)) * 2^(n^2 + n/2) / Pi^(n/2) if n is even and a(n) ~ exp(-3/4) * QPochhammer(exp(-4)) * QPochhammer(-n*exp(-4), exp(-4)) * 2^(n^2 + n/2) * sqrt(n) / Pi^(n/2) if n is odd. - Vaclav Kotesovec, Jul 13 2020

A336214 a(n) = Sum_{k=0..n} k^n * binomial(n,k)^n, with a(0)=1.

Original entry on oeis.org

1, 1, 8, 270, 41984, 30706250, 94770093312, 1336016204844832, 76829717664330940416, 19838680914222199482800274, 20521247958509575370600000000000, 94285013320530947020636486516362047300, 1715947732437668013396578734960052732361179136
Offset: 0

Views

Author

Vaclav Kotesovec, Jul 12 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Flatten[{1, Table[Sum[k^n*Binomial[n, k]^n, {k, 1, n}], {n, 1, 15}]}]
  • PARI
    a(n) = if (n==0, 1, sum(k=0, n, k^n * binomial(n,k)^n)); \\ Michel Marcus, Jul 13 2020

Formula

a(n) ~ c * exp(-1/4) * 2^(n^2 - n/2) * n^(n/2) / Pi^(n/2), where c = Sum_{k = -infinity..infinity} exp(-2*k*(k-1)) = exp(1/2) * sqrt(Pi/2) * EllipticTheta(3, -Pi/2, exp(-Pi^2/2)) = 2.036643566277677716389243890291939003151565... if n is even and c = Sum_{k = -infinity..infinity} exp(-2*k^2 + 1/2) = exp(1/2) * EllipticTheta(3, 0, exp(-2)) = 2.096087809957308346119920713317351288828811... if n is odd.
a(n) = n^n * A328812(n-1) for n > 0. - Seiichi Manyama, Jul 15 2020
Showing 1-2 of 2 results.