cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A336259 a(0) = 1; a(n) = (n!)^3 * Sum_{k=0..n-1} a(k) / (k! * (n-k))^3.

Original entry on oeis.org

1, 1, 9, 278, 20464, 2948824, 735078968, 291153023664, 172201253334528, 145044581320046592, 167609226267379703808, 257816558769660828601344, 514890814087717253133447168, 1307445058678686737908660752384, 4146656933568759002389401276616704
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 15 2020

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1,
          add(b(n-i)/i^3, i=1..n))
        end:
    a:= n-> n!^3*b(n):
    seq(a(n), n=0..14);  # Alois P. Heinz, Jan 04 2024
  • Mathematica
    a[0] = 1; a[n_] := a[n] = (n!)^3 Sum[a[k]/(k! (n - k))^3, {k, 0, n - 1}]; Table[a[n], {n, 0, 14}]
    nmax = 14; CoefficientList[Series[1/(1 - PolyLog[3, x]), {x, 0, nmax}], x] Range[0, nmax]!^3

Formula

a(n) = (n!)^3 * [x^n] 1 / (1 - polylog(3,x)).
a(n) ~ (n!)^3 / (polylog(2,r) * r^n), where r = 0.86512013798076629268795131756... is the root of the equation polylog(3,r) = 1. - Vaclav Kotesovec, Jul 15 2020

A336260 a(0) = 1; a(n) = (n!)^4 * Sum_{k=0..n-1} a(k) / (k! * (n-k))^4.

Original entry on oeis.org

1, 1, 17, 1474, 404768, 271581776, 377987513392, 974814164752800, 4289222350867156992, 30232332223815625555968, 324796212685273837095714816, 5108947647642107040382284423168, 113818571142935411070742114448769024, 3492592855002964381945529723625305210880
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 15 2020

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1,
          add(b(n-i)/i^4, i=1..n))
        end:
    a:= n-> n!^4*b(n):
    seq(a(n), n=0..14);  # Alois P. Heinz, Jan 04 2024
  • Mathematica
    a[0] = 1; a[n_] := a[n] = (n!)^4 Sum[a[k]/(k! (n - k))^4, {k, 0, n - 1}]; Table[a[n], {n, 0, 13}]
    nmax = 13; CoefficientList[Series[1/(1 - PolyLog[4, x]), {x, 0, nmax}], x] Range[0, nmax]!^4

Formula

a(n) = (n!)^4 * [x^n] 1 / (1 - polylog(4,x)).
a(n) ~ (n!)^4 / (polylog(3,r) * r^n), where r = 0.93073451517099234709643607941... is the root of the equation polylog(4,r) = 1. - Vaclav Kotesovec, Jul 15 2020

A336258 a(0) = 1; a(n) = (n!)^2 * Sum_{k=0..n-1} a(k) / (k! * (n-k))^2.

Original entry on oeis.org

1, 1, 5, 58, 1208, 39476, 1861372, 119587224, 10040970816, 1067383279872, 140110136642304, 22256626639796352, 4207858001708629248, 933704296260740939520, 240293228328619963492608, 70992050129486593239246336, 23863916105454465092261412864
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 15 2020

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1,
          add(b(n-i)/i^2, i=1..n))
        end:
    a:= n-> n!^2*b(n):
    seq(a(n), n=0..16);  # Alois P. Heinz, Jan 04 2024
  • Mathematica
    a[0] = 1; a[n_] := a[n] = (n!)^2 Sum[a[k]/(k! (n - k))^2, {k, 0, n - 1}]; Table[a[n], {n, 0, 16}]
    nmax = 16; CoefficientList[Series[1/(1 - PolyLog[2, x]), {x, 0, nmax}], x] Range[0, nmax]!^2

Formula

a(n) = (n!)^2 * [x^n] 1 / (1 - polylog(2,x)).
a(n) ~ (n!)^2 / (-log(1-r) * r^n), where r = 0.76154294453204558806805187241... is the root of the equation polylog(2,r) = 1. - Vaclav Kotesovec, Jul 15 2020

A337678 a(0) = 1; a(n) = -(n!)^5 * Sum_{k=0..n-1} a(k) / (k! * (n-k))^5.

Original entry on oeis.org

1, -1, 31, -7322, 7281664, -22105862624, 166969429228448, -2726003940127256256, 86768429205346333655040, -4977000682976771751013908480, 483455102073887625685155978412032, -75632981854199587114694850276377296896, 18281294958403743105166278735321854559387648
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 15 2020

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = -(n!)^5 Sum[a[k]/(k! (n - k))^5, {k, 0, n - 1}]; Table[a[n], {n, 0, 12}]
    nmax = 12; CoefficientList[Series[1/(1 + PolyLog[5, x]), {x, 0, nmax}], x] Range[0, nmax]!^5
  • PARI
    a(n)={n!^5*polcoef(1/(1 + polylog(5,x + O(x*x^n))), n)} \\ Andrew Howroyd, Sep 15 2020

Formula

Sum_{n>=0} a(n) * x^n / (n!)^5 = 1 / (1 + polylog(5,x)).

A368754 a(n) = (n!)^n * [x^n] * 1/(1 - polylog(n,x)).

Original entry on oeis.org

1, 1, 5, 278, 404768, 28436662624, 151309093659896512, 86745908552613198656020224, 7184659625769578063908866060107907072, 110866279942987479997999976181870531647691458347008, 399488258540989429698770032526869852804662313023226648081962369024
Offset: 0

Views

Author

Alois P. Heinz, Jan 04 2024

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> n!^n*coeff(series(1/(1-polylog(n, x)), x, n+1), x, n):
    seq(a(n), n=0..10);
    # second Maple program:
    b:= proc(n, k) option remember; `if`(n=0, 1,
          add(b(n-j, k)/j^k, j=1..n))
        end:
    a:= n-> n!^n*b(n$2):
    seq(a(n), n=0..10);

Formula

a(n) = (n!)^n*b(n,n) with b(n,k) = Sum_{j=1..n} b(n-j,k)/j^k for n>0, b(0,k) = 1.
Showing 1-5 of 5 results.