cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A336415 Number of divisors of n! with equal prime multiplicities.

Original entry on oeis.org

1, 1, 2, 4, 6, 10, 13, 21, 24, 28, 33, 49, 53, 85, 94, 100, 104, 168, 173, 301, 307, 317, 334, 590, 595, 603, 636, 642, 652, 1164, 1171, 2195, 2200, 2218, 2283, 2295, 2301, 4349, 4478, 4512, 4519, 8615, 8626, 16818, 16836, 16844, 17101, 33485, 33491, 33507, 33516, 33582
Offset: 0

Views

Author

Gus Wiseman, Jul 22 2020

Keywords

Comments

A number k has "equal prime multiplicities" (or is "uniform") iff its prime signature is constant, meaning that k is a power of a squarefree number.

Examples

			The a(n) uniform divisors of n for n = 1, 2, 6, 8, 30, 36 are the columns:
  1  2  6  8  30  36
     1  3  6  15  30
        2  4  10  16
        1  3   8  15
           2   6  10
           1   5   9
               4   8
               3   6
               2   5
               1   4
                   3
                   2
                   1
In 20!, the multiplicity of the third prime (5) is 4 but the multiplicity of the fourth prime (7) is 2. Hence there are 2^3 - 1 = 3 divisors with all exponents 3 (we subtract |{1}| = 1 from that count as 1 has no exponent 3). - _David A. Corneth_, Jul 27 2020
		

Crossrefs

The version for distinct prime multiplicities is A336414.
The version for nonprime perfect powers is A336416.
Uniform partitions are counted by A047966.
Uniform numbers are A072774, with nonprime terms A182853.
Numbers with distinct prime multiplicities are A130091.
Divisors with distinct prime multiplicities are counted by A181796.
Maximum divisor with distinct prime multiplicities is A327498.
Uniform divisors are counted by A327527.
Maximum uniform divisor is A336618.
1st differences are given by A048675.

Programs

  • Mathematica
    Table[Length[Select[Divisors[n!],SameQ@@Last/@FactorInteger[#]&]],{n,0,15}]
  • PARI
    a(n) = sumdiv(n!, d, my(ex=factor(d)[,2]); (#ex==0) || (vecmin(ex) == vecmax(ex))); \\ Michel Marcus, Jul 24 2020
    
  • PARI
    a(n) = {if(n<2, return(1)); my(f = primes(primepi(n)), res = 1, t = #f); f = vector(#f, i, val(n, f[i])); for(i = 1, f[1], while(f[t] < i, t--; ); res+=(1<David A. Corneth, Jul 27 2020

Formula

a(n) = A327527(n!).

Extensions

Terms a(31) and onwards from David A. Corneth, Jul 27 2020

A336616 Maximum divisor of n! with distinct prime multiplicities.

Original entry on oeis.org

1, 1, 2, 3, 24, 40, 720, 1008, 8064, 72576, 3628800, 5702400, 68428800, 80870400, 317011968, 118879488000, 1902071808000, 2487324672000, 44771844096000, 50039119872000, 1000782397440000, 21016430346240000, 5085976143790080000, 6156707963535360000
Offset: 0

Views

Author

Gus Wiseman, Jul 29 2020

Keywords

Comments

A number's prime signature (row n of A124010) is the sequence of positive exponents in its prime factorization, so a number has distinct prime multiplicities iff all the exponents in its prime signature are distinct.

Examples

			The sequence of terms together with their prime signatures begins:
             1: ()
             1: ()
             2: (1)
             3: (1)
            24: (3,1)
            40: (3,1)
           720: (4,2,1)
          1008: (4,2,1)
          8064: (7,2,1)
         72576: (7,4,1)
       3628800: (8,4,2,1)
       5702400: (8,4,2,1)
      68428800: (10,5,2,1)
      80870400: (10,5,2,1)
     317011968: (11,5,2,1)
  118879488000: (11,6,3,2,1)
		

Crossrefs

A327498 is the version not restricted to factorials, with quotient A327499.
A336414 counts these divisors.
A336617 is the quotient n!/a(n).
A336618 is the version for equal prime multiplicities.
A130091 lists numbers with distinct prime multiplicities.
A181796 counts divisors with distinct prime multiplicities.
A327526 gives the maximum divisor of n with equal prime multiplicities.
A336415 counts divisors of n! with equal prime multiplicities.

Programs

  • Mathematica
    Table[Max@@Select[Divisors[n!],UnsameQ@@Last/@If[#==1,{},FactorInteger[#]]&],{n,0,15}]
  • PARI
    a(n) = { if(n < 2, return(1)); my(pr = primes(primepi(n)), res = pr[#pr]); for(i = 1, #pr, pr[i] = [pr[i], val(n, pr[i])] ); forstep(i = #pr, 2, -1, if(pr[i][2] < pr[i-1][2], res*=pr[i-1][1]^pr[i-1][2] ) ); res }
    val(n, p) = my(r=0); while(n, r+=n\=p); r \\ David A. Corneth, Aug 25 2020

Formula

a(n) = A327498(n!).

A336617 a(n) = n!/d where d = A336616(n) is the maximum divisor of n! with distinct prime multiplicities.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 5, 5, 5, 1, 7, 7, 77, 275, 11, 11, 143, 143, 2431, 2431, 2431, 221, 4199, 4199, 4199, 39083, 39083, 39083, 898909, 898909, 26068361, 26068361, 215441, 2141737, 2141737, 2141737, 66393847, 1009885357, 7953594143, 7953594143, 294282983291
Offset: 0

Views

Author

Gus Wiseman, Jul 29 2020

Keywords

Comments

A number's prime signature (row n of A124010) is the sequence of positive exponents in its prime factorization, so a number has distinct prime multiplicities iff all the exponents in its prime signature are distinct.

Examples

			The maximum divisor of 13! with distinct prime multiplicities is 80870400, so a(13) = 13!/80870400 = 77.
		

Crossrefs

A327499 is the non-factorial generalization, with quotient A327498.
A336414 counts these divisors.
A336616 is the maximum divisor d.
A336619 is the version for equal prime multiplicities.
A130091 lists numbers with distinct prime multiplicities.
A181796 counts divisors with distinct prime multiplicities.
A336415 counts divisors of n! with equal prime multiplicities.

Programs

  • Mathematica
    Table[n!/Max@@Select[Divisors[n!],UnsameQ@@Last/@If[#==1,{},FactorInteger[#]]&],{n,0,15}]

Formula

a(n) = A327499(n!).

Extensions

More terms from Jinyuan Wang, Jul 31 2020

A336619 a(n) = n!/d where d is the maximum divisor of n! with equal prime exponents.

Original entry on oeis.org

1, 1, 1, 1, 3, 4, 20, 24, 192, 280, 2800, 17280, 61600, 207360, 1976832, 28028000, 448448000, 696729600, 3811808000, 12541132800, 250822656000, 5069704640000, 111533502080000, 115880067072000, 2781121609728000, 21277380032004096, 447206762741760000
Offset: 0

Views

Author

Gus Wiseman, Jul 30 2020

Keywords

Comments

A number has equal prime exponents iff it is a power of a squarefree number. We call such numbers uniform, so a(n) is n! divided by the maximum uniform divisor of n!.
After the first three terms, is this sequence strictly increasing?

Examples

			The sequence of terms together with their prime signatures begins:
           1: ()
           1: ()
           1: ()
           1: ()
           3: (1)
           4: (2)
          20: (2,1)
          24: (3,1)
         192: (6,1)
         280: (3,1,1)
        2800: (4,2,1)
       17280: (7,3,1)
       61600: (5,2,1,1)
      207360: (9,4,1)
     1976832: (9,3,1,1)
    28028000: (5,3,2,1,1)
   448448000: (9,3,2,1,1)
   696729600: (14,5,2,1)
  3811808000: (8,3,2,1,1,1)
		

Crossrefs

A327528 is the non-factorial generalization, with quotient A327526.
A336415 counts these divisors.
A336617 is the version for distinct prime exponents.
A336618 is the quotient n!/a(n).
A047966 counts uniform partitions.
A071625 counts distinct prime exponents.
A072774 gives Heinz numbers of uniform partitions, with nonprime terms A182853.
A130091 lists numbers with distinct prime exponents.
A181796 counts divisors with distinct prime exponents.
A319269 counts uniform factorizations.
A327524 counts factorizations of uniform numbers into uniform numbers.
A327527 counts uniform divisors.

Programs

  • Mathematica
    Table[n!/Max@@Select[Divisors[n!],SameQ@@Last/@FactorInteger[#]&],{n,0,15}]

Formula

a(n) = n!/A336618(n) = n!/A327526(n!).
Showing 1-4 of 4 results.