A336829 a(n) = Sum_{k=0..n} binomial(n+k,k)^n.
1, 3, 46, 9065, 25561876, 1048567813062, 632156164654144530, 5652307059542612442465921, 755658094192422806457805924637704, 1521188219372604726826961340683399629967888, 46388428590466766659538640978460161019178279424832676
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..41
Programs
-
Magma
[(&+[Binomial(2*n-j,n)^n: j in [0..n]]): n in [0..20]]; // G. C. Greubel, Aug 31 2022
-
Mathematica
Table[Sum[Binomial[n + k, k]^n, {k, 0, n}], {n, 0, 10}]
-
PARI
a(n) = sum(k=0, n, binomial(n+k, k)^n); \\ Michel Marcus, Aug 05 2020
-
SageMath
def A336829(n): return sum(binomial(2*n-j, n)^n for j in (0..n)) [A336829(n) for n in (0..20)] # G. C. Greubel, Aug 31 2022
Formula
a(n) ~ exp(-1/8) * 2^(2*n^2) / (Pi*n)^(n/2). - Vaclav Kotesovec, Jul 10 2021