cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337099 Largest positive number using exactly n segments on a calculator display (when '6' and '7' are represented using 6 resp. 3 segments).

Original entry on oeis.org

1, 7, 11, 71, 111, 711, 1111, 7111, 11111, 71111, 111111, 711111, 1111111, 7111111, 11111111, 71111111, 111111111, 711111111, 1111111111, 7111111111, 11111111111, 71111111111, 111111111111, 711111111111, 1111111111111, 7111111111111, 11111111111111, 71111111111111
Offset: 2

Views

Author

Suren Suren, Sep 29 2020

Keywords

Comments

The sequence begins with a(2) = 1 since at least two segments are needed to form any digit. It requires two segments to form the digit 1 and three segments to form the digit 7.
All other digits use more than 3 segments.

Crossrefs

Cf. A063720 (number of segments), A216261 (smallest number), A249572.

Programs

  • Mathematica
    CoefficientList[Series[(1 + 6*x - 6*x^2)/(1 - x - 10*x^2 + 10*x^3), {x, 0, 30}], x] (* Wesley Ivan Hurt, Nov 07 2020 *)

Formula

a(n+2) = 10*a(n) + 1 for n >= 2.
a(2*n) = (10^n - 1)/9 ; a(2*n + 1) = ((10^n - 1)/9) + 6*10^(n - 1).
From Stefano Spezia, Sep 29 2020: (Start)
G.f.: x^2*(1 + 6*x - 6*x^2)/(1 - x - 10*x^2 + 10*x^3).
a(n) = a(n-1) + 10*a(n-2) - 10*a(n-3) for n > 4. (End)

Extensions

More terms from Stefano Spezia, Sep 29 2020