A338321 Trace of complement matrix for polynomial triangle centers of degree n (on the Nagel line).
1, 3, 4, 5, 6, 9, 9, 12, 14, 16, 18, 22, 23, 27, 30, 33, 36, 41, 43, 48, 52, 56, 60, 66, 69, 75, 80, 85, 90, 97, 101, 108, 114, 120, 126, 134, 139, 147, 154, 161, 168, 177, 183, 192, 200, 208, 216, 226, 233, 243, 252, 261, 270, 281, 289, 300, 310, 320, 330
Offset: 1
Examples
S represents the sum taken over all distinct permutations of a, b, c, for example, s(a^2*b) means a^2*b+a^2*c+b^2*c+b^2*a+c^2*a+c^2*b, s(a) means a+b+c. For n=1: The basis is {a+b+c, a}. Let T represent the complement transformation, then T(a) = b+c = (a+b+c) - a T(a+b+c) = 2(a+b+c) So the corresponding matrix is (2 1) (0 -1) Its trace is 1, giving a(1) = 1. For n=2: The basis is {s(a^2), s(a*b), a*s(a) }. T(s(a^2)) =2s(a^2) T(s(ab)) =2s(a*b) T(a*s(a)) =s(a^2) +2s(a*b) -a*s(a) The corresponding matrix is (-1, 0, 0) ( 1, 2, 0) ( 2, 0, 2) Its trace is 3, giving a(2) = 3. For n=3: The basis is {s(a^3), s(a^2*b), a*b*c, a*s(a^2), a*s(a*b) }. T(s(a^3)) =2s(a^3) T(s(a^2*b)) =2s(a^2*b) T(a*b*c) =2a*b*c T(a*s(a^2)) =s(a^2*b) +s(a^3) -a*s(a^2) T(a*s(a*b)) =s(a^2*b) +3a*b*c -a*s(ab) Thus the corresponding matrix is (2, 0, 0, 1, 0) (0, 2, 0, 1, 1) (0, 0, 2, 0, 3) (0, 0, 0,-1, 0) (0, 0, 0, 0,-1) Its trace is 4, thus a(3) =4.
Links
- Clark Kimberling, A Combinatorial Classification of Triangle Centers on the Line at Infinity, J. Int. Seq., Vol. 22 (2019), Article 19.5.4.
- Index entries for linear recurrences with constant coefficients, signature (1,1,0,-1,-1,1).
Crossrefs
Cf. A001399.
Programs
-
PARI
f(n) = round((n + 3)^2 / 12); \\ A001399 a(n) = 2*f(n) - f(n-1);
Formula
G.f.: -x*(2*x^5-2*x^4-2*x^3+2*x+1)/((x+1)*(x^2+x+1)*(x-1)^3). - Alois P. Heinz, Oct 22 2020
Comments