A337323 a(n) = gcd(n, tau(n), sigma(n), pod(n)) where tau(k) is the number of divisors of k (A000005), sigma(k) is the sum of divisors of k (A000203) and pod(k) is the product of divisors of k (A007955).
1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 8, 1, 2, 1, 12, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1
Offset: 1
Examples
a(6) = gcd(6, tau(6), sigma(6), pod(6)) = gcd(6, 4, 12, 36) = 2.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Magma
[GCD([n, #Divisors(n), &+Divisors(n), &*Divisors(n)]): n in [1..100]]
-
Maple
f:= proc(n) uses numtheory; igcd(n, tau(n), sigma(n)) end proc: map(f, [$1..100]); # Robert Israel, Sep 01 2020
-
Mathematica
a[n_] := GCD @@ {n, DivisorSigma[0, n], DivisorSigma[1, n]}; Array[a, 100] (* Amiram Eldar, Aug 24 2020 *)
-
PARI
a(n) = my(f=factor(n)); gcd([n, sigma(f), numdiv(f)]); \\ Michel Marcus, Apr 01 2021
Formula
a(p) = 1 for p = primes (A000040).
a(n) = 1 for n = p^k, p prime, k >= 0 (A000961). - Bernard Schott, Apr 01 2021
Comments