cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337323 a(n) = gcd(n, tau(n), sigma(n), pod(n)) where tau(k) is the number of divisors of k (A000005), sigma(k) is the sum of divisors of k (A000203) and pod(k) is the product of divisors of k (A007955).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 8, 1, 2, 1, 12, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1
Offset: 1

Views

Author

Jaroslav Krizek, Aug 23 2020

Keywords

Comments

GCD(n, tau(n), sigma(n), pod(n)) = GCD(n, tau(n), sigma(n)). - David A. Corneth, Aug 24 2020

Examples

			a(6) = gcd(6, tau(6), sigma(6), pod(6)) = gcd(6, 4, 12, 36) = 2.
		

Crossrefs

Cf. A336722 (gcd(tau(n), sigma(n), pod(n))).
Cf. A337324 (least m such that gcd(m, tau(m), sigma(m), pod(m)) = n).
Cf. A336723 (lcm(tau(n), sigma(n), pod(n))) = (lcm(n, tau(n), sigma(n), pod(n))).

Programs

  • Magma
    [GCD([n, #Divisors(n), &+Divisors(n), &*Divisors(n)]): n in [1..100]]
    
  • Maple
    f:= proc(n) uses numtheory; igcd(n, tau(n), sigma(n)) end proc:
    map(f, [$1..100]); # Robert Israel, Sep 01 2020
  • Mathematica
    a[n_] := GCD @@ {n, DivisorSigma[0, n], DivisorSigma[1, n]}; Array[a, 100] (* Amiram Eldar, Aug 24 2020 *)
  • PARI
    a(n) = my(f=factor(n)); gcd([n, sigma(f), numdiv(f)]); \\ Michel Marcus, Apr 01 2021

Formula

a(p) = 1 for p = primes (A000040).
a(n) = 1 for n = p^k, p prime, k >= 0 (A000961). - Bernard Schott, Apr 01 2021