A337325 a(n) is the smallest number m such that gcd(tau(m), sigma(m), pod(m)) = n where tau(k) is the number of divisors of k (A000005), sigma(k) is the sum of divisors of k (A000203) and pod(k) is the product of divisors of k (A007955).
1, 10, 18, 6, 5000, 90, 66339, 30, 288, 3240, 10036224, 60, 582160384, 20412, 16200, 168, 49030215219, 612, 4637065216, 1520, 142884, 912384, 98881718827959, 420, 7543125, 479232, 14112, 5824, 26559758051835904, 104400, 25796647321600, 840, 491774976, 1268973568
Offset: 1
Keywords
Examples
For n = 6; a(6) = 90 because 90 is the smallest number with gcd(tau(90), sigma(90), pod(90)) = gcd(12, 234, 531441000000) = 6.
Crossrefs
Programs
-
Magma
[Min([m: m in[1..10^5] | GCD([#Divisors(m), &+Divisors(m), &*Divisors(m)]) eq k]): k in [1..10]]
-
PARI
f(n) = my(d=divisors(factor(n))); gcd([#d, vecsum(d), vecprod(d)]); a(n) = my(m=1); while (f(m) != n, m++); m; \\ Michel Marcus, Sep 21 2020
Extensions
a(11) and a(13) from Amiram Eldar, Aug 25 2020
More terms from Jinyuan Wang, Oct 03 2020
Comments