cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A338170 a(n) is the number of divisors d of n such that tau(d) divides sigma(d).

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 2, 1, 2, 2, 2, 3, 2, 3, 4, 1, 2, 3, 2, 3, 4, 3, 2, 3, 2, 2, 3, 3, 2, 6, 2, 1, 4, 2, 4, 3, 2, 3, 4, 3, 2, 7, 2, 4, 5, 3, 2, 3, 3, 2, 4, 2, 2, 5, 4, 4, 4, 2, 2, 8, 2, 3, 4, 1, 4, 7, 2, 3, 4, 6, 2, 3, 2, 2, 4, 3, 4, 6, 2, 3, 3, 2, 2, 7, 4, 3, 4, 4, 2, 7, 4, 4, 4, 3, 4, 4, 2, 4, 5, 3, 2, 6, 2, 2, 8
Offset: 1

Views

Author

Jaroslav Krizek, Oct 14 2020

Keywords

Comments

a(n) is the number of arithmetic divisors d of n.
a(n) = tau(n) = A000005(n) for numbers n from A334420.
See A338171 and A338172 for sum and product such divisors.
a(n) = 1 iff n = 2^k (A000079). - Bernard Schott, Dec 06 2020

Examples

			a(6) = 3 because there are 3 arithmetic divisors of 6 (1, 3 and 6):
sigma(1)/tau(1) =  1/1 = 1; sigma(3)/tau(3) = 4/2 = 2; sigma(6)/tau(6) = 12/4 = 3.
		

Crossrefs

Inverse Möbius transform of A245656.
Cf. A000005 (tau), A000203 (sigma), A003601 (arithmetic numbers).
Cf. A337326 (smallest numbers m with n such divisors).

Programs

  • Magma
    [#[d: d in Divisors(n) | IsIntegral(&+Divisors(d) / #Divisors(d))]: n in [1..100]];
    
  • Mathematica
    a[n_] := DivisorSum[n, 1 &, Divisible[DivisorSigma[1, #], DivisorSigma[0, #]] &]; Array[a, 100] (* Amiram Eldar, Oct 15 2020 *)
  • PARI
    a(n) = sumdiv(n, d, !(sigma(d) % numdiv(d))); \\ Michel Marcus, Oct 15 2020

Formula

a(n) = Sum_{d|n} c(d), where c(n) is the arithmetic characteristic of n (A245656).
a(p) = 2 for odd primes p (A065091).

Extensions

Data section extended up to 105 terms by Antti Karttunen, Dec 12 2021

A368215 a(n) is the smallest number k >= 1 that has exactly n divisors in A020487.

Original entry on oeis.org

1, 4, 16, 36, 256, 100, 200, 576, 400, 800, 2600, 900, 3200, 1800, 16900, 6400, 12800, 3600, 20800, 7200, 11700, 36000, 67600, 14400, 23400, 28800, 32400, 88200, 397800, 64800, 270400, 46800, 152100, 115200, 234000, 93600, 1258400, 230400, 259200, 352800, 1081600
Offset: 1

Views

Author

Marius A. Burtea, Dec 17 2023

Keywords

Comments

a(n) exists for each n because 4^(n-1) has n antiharmonic divisors.

Examples

			a(1) = 1 because 1 has only one divisor 1 = A020487(1).
The numbers 2 and 3 have only the divisor 1 in A020487 and 4 has the divisors 1 = A020487(1) and 4 = A020487(2), so a(2) = 4.
		

Crossrefs

Programs

  • Magma
    f:=func; a:=[]; for n in [1..41] do k:=1; while #[d:d in Divisors(k)|f(d)] ne n do k:=k+1; end while; Append(~a,k); end for; a;
    
  • Mathematica
    f[n_] := DivisorSum[n, 1 &, Divisible[DivisorSigma[2, #], DivisorSigma[1, #]] &]; seq[len_] := Module[{s = Table[0, {len}], c = 0, n = 1}, While[c < len, If[(i = f[n]) <= len && s[[i]] == 0, c++; s[[i]] = n]; n++]; s]; seq[25] (* Amiram Eldar, Dec 18 2023 *)
  • PARI
    a(n) = my(k=1); while(sumdiv(k, d, sigma(d, 2)%sigma(d)==0) != n, k++); k; \\ Michel Marcus, Dec 18 2023
Showing 1-2 of 2 results.