cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A337669 Decimal expansion of Product_{n>=3} (1-1/Fibonacci(n)).

Original entry on oeis.org

1, 8, 9, 7, 8, 9, 1, 4, 3, 6, 1, 7, 8, 6, 6, 0, 3, 6, 3, 4, 9, 4, 8, 2, 5, 1, 4, 2, 9, 0, 3, 4, 0, 5, 3, 1, 2, 7, 2, 9, 8, 1, 4, 9, 1, 3, 1, 9, 2, 8, 8, 7, 5, 2, 2, 9, 0, 6, 8, 9, 0, 7, 0, 7, 1, 0, 8, 2, 0, 4, 6, 9, 4, 5, 7, 0, 3, 7, 0, 4, 4, 5, 6, 6, 7, 9, 7
Offset: 0

Views

Author

Michel Marcus, Sep 15 2020

Keywords

Examples

			0.18978914361786603634948251429...
		

Crossrefs

Programs

  • Mathematica
    With[{b = 1/GoldenRatio}, RealDigits[(Sqrt[5]/6)*b^(-5/4) * EllipticTheta[2, 0, b] * EllipticTheta[3, 0, b] * EllipticTheta[4, 0, b]/EllipticTheta[4, 0, b^4], 10, 100][[1]]] (* Amiram Eldar, May 27 2021 *)
  • PARI
    prodinf(n=3, 1-1/fibonacci(n))

Formula

Equals (sqrt(5)/6) * b^(-5/4) * theta_2(b) * theta_3(b) * theta_4(b)/theta_4(b^4), where theta_i are the Jacobi theta functions and b = 1/phi = A094214 (Duverney and Tachiya, 2021). - Amiram Eldar, May 27 2021
Equals (sqrt(5) * phi^(5/4) / 3) * eta(tau_0)^3 * eta(4*tau_0) / eta(2*tau_0)^2, where phi is the golden ratio (A001622), tau_0 = i*log(phi)/Pi, and i = sqrt(-1) (Duverney et al., 2022). - Amiram Eldar, Mar 26 2024

Extensions

More terms from Jinyuan Wang, Sep 19 2020

A371525 Decimal expansion of Product_{k>=1} (1 + 1/Lucas(k)).

Original entry on oeis.org

4, 7, 9, 6, 2, 8, 8, 5, 2, 3, 1, 8, 8, 3, 8, 5, 4, 6, 3, 8, 1, 0, 3, 7, 0, 1, 4, 0, 7, 5, 1, 2, 1, 5, 8, 4, 9, 8, 1, 9, 5, 1, 6, 3, 0, 8, 0, 9, 2, 3, 4, 7, 7, 4, 1, 8, 3, 7, 3, 9, 5, 7, 2, 2, 0, 5, 7, 8, 3, 4, 2, 6, 1, 6, 7, 9, 3, 5, 0, 8, 9, 5, 4, 9, 8, 5, 7, 6, 6, 1, 0, 8, 0, 0, 6, 2, 8, 3, 1, 2, 5, 4, 6, 6, 6
Offset: 1

Views

Author

Amiram Eldar, Mar 26 2024

Keywords

Comments

Any two of the four constants {A337668, A337669, this, A371526} are algebraically independent over Q, while any three are not (Duverney et al., 2022).

Examples

			4.79628852318838546381037014075121584981951630809234...
		

Crossrefs

Programs

  • Mathematica
    With[{eta = DedekindEta, tau0 = Log[GoldenRatio]*I/Pi}, RealDigits[2 * Surd[GoldenRatio, 4] * eta[2*tau0]^3 * eta[3*tau0]/(eta[tau0]^2 * eta[4*tau0]), 10, 120][[1]]]
  • PARI
    prodinf(k = 1, 1 + 1/(fibonacci(k-1) + fibonacci(k+1)))

Formula

Equals Product_{k>=1} (1 + 1/A000032(k)).
Equals 2 * sqrt(5) * A371529.
Equals 2 * phi^(1/4) * eta(2*tau_0)^3 * eta(3*tau_0) / (eta(tau_0)^2 * eta(4*tau_0)), where phi is the golden ratio (A001622), tau_0 = i*log(phi)/Pi, and i = sqrt(-1) (Duverney et al., 2022).

A371526 Decimal expansion of Product_{k>=2} (1 - 1/Lucas(k)).

Original entry on oeis.org

3, 3, 5, 8, 9, 7, 6, 6, 9, 3, 5, 7, 1, 0, 2, 1, 0, 3, 1, 4, 7, 6, 6, 5, 7, 2, 6, 6, 3, 1, 2, 2, 6, 5, 8, 0, 4, 8, 5, 4, 6, 1, 0, 4, 0, 2, 1, 3, 7, 3, 4, 8, 9, 4, 1, 8, 0, 5, 4, 6, 6, 6, 6, 6, 6, 1, 2, 9, 8, 0, 8, 6, 8, 0, 5, 3, 9, 2, 5, 3, 6, 6, 8, 4, 8, 5, 7, 6, 2, 6, 1, 2, 8, 3, 5, 0, 3, 4, 3, 5, 5, 3, 0, 7, 2, 4, 8, 2, 2, 4, 4, 0, 3, 5, 1, 7, 6, 7, 7, 1
Offset: 0

Views

Author

Amiram Eldar, Mar 26 2024

Keywords

Comments

Any two of the four constants {A337668, A337669, A371525, this} are algebraically independent over Q, while any three are not (Duverney et al., 2022).

Examples

			0.33589766935710210314766572663122658048546104021373...
		

Crossrefs

Programs

  • Mathematica
    With[{eta = DedekindEta, tau0 = Log[GoldenRatio]*I/Pi}, RealDigits[(Surd[GoldenRatio, 4] / Sqrt[5]) * eta[2*tau0]^2 * eta[6*tau0]/(eta[3*tau0] * eta[4*tau0]), 10, 120][[1]]]
  • PARI
    prodinf(k = 2, 1 - 1/(fibonacci(k-1) + fibonacci(k+1)))

Formula

Equals Product_{k>=2} (1 - 1/A000032(k)).
Equals A371530 / (2*sqrt(5)).
Equals (phi^(1/4) / sqrt(5)) * eta(2*tau_0)^2 * eta(6*tau_0) / (eta(3*tau_0) * eta(4*tau_0)), where phi is the golden ratio (A001622), tau_0 = i*log(phi)/Pi, and i = sqrt(-1) (Duverney et al., 2022).

A371527 Decimal expansion of Product_{k>=2} (1 + (-1)^k/Fibonacci(k)).

Original entry on oeis.org

1, 1, 3, 8, 7, 3, 4, 8, 6, 1, 7, 0, 7, 1, 9, 6, 2, 1, 8, 0, 9, 6, 8, 9, 5, 0, 8, 5, 7, 4, 2, 0, 4, 3, 1, 8, 7, 6, 3, 7, 8, 8, 8, 9, 4, 7, 9, 1, 5, 7, 3, 2, 5, 1, 3, 7, 4, 4, 1, 3, 4, 4, 2, 4, 2, 6, 4, 9, 2, 2, 8, 1, 6, 7, 4, 2, 2, 2, 2, 2, 6, 7, 4, 0, 0, 7, 8, 6, 2, 3, 9, 3, 3, 8, 4, 0, 9, 2, 1, 7, 6, 4, 4, 3, 9
Offset: 1

Views

Author

Amiram Eldar, Mar 26 2024

Keywords

Examples

			1.13873486170719621809689508574204318763788894791573...
		

Crossrefs

Programs

  • Mathematica
    With[{eta = DedekindEta, tau0 = Log[GoldenRatio]*I/Pi}, RealDigits[2 * Sqrt[5] * Surd[GoldenRatio^5, 4] * eta[tau0]^3 * eta[4*tau0]/eta[2*tau0]^2, 10, 120][[1]]]
  • PARI
    prodinf(k = 2, 1 + (-1)^k/fibonacci(k))

Formula

Equals Product_{k>=2} (1 + (-1)^k/A000045(k)).
Equals 6 * A337669.
Equals 2 * sqrt(5) * phi^(5/4) * eta(tau_0)^3 * eta(4*tau_0) / eta(2*tau_0)^2, where phi is the golden ratio (A001622), tau_0 = i*log(phi)/Pi, and i = sqrt(-1) (Duverney et al., 2022).

A371528 Decimal expansion of Product_{k>=3} (1 - (-1)^k/Fibonacci(k)).

Original entry on oeis.org

1, 0, 9, 5, 9, 1, 3, 8, 8, 8, 1, 4, 8, 6, 8, 2, 0, 3, 0, 6, 3, 4, 3, 6, 9, 4, 4, 7, 5, 5, 2, 2, 2, 1, 5, 7, 7, 6, 8, 2, 5, 1, 6, 6, 2, 8, 5, 9, 7, 0, 2, 3, 7, 2, 5, 1, 1, 2, 8, 4, 1, 7, 2, 8, 9, 2, 9, 8, 0, 8, 1, 7, 0, 5, 0, 2, 3, 0, 0, 9, 8, 4, 0, 9, 3, 1, 8, 6, 8, 0, 2, 4, 8, 6, 1, 0, 9, 3, 3, 6, 2, 6, 7, 8, 1
Offset: 1

Views

Author

Amiram Eldar, Mar 26 2024

Keywords

Examples

			1.09591388814868203063436944755222157768251662859702...
		

Crossrefs

Programs

  • Mathematica
    With[{eta = DedekindEta, tau0 = Log[GoldenRatio]*I/Pi}, RealDigits[(Surd[GoldenRatio^5, 4] / 3) * eta[4*tau0]/eta[tau0], 10, 120][[1]]]
  • PARI
    prodinf(k = 3, 1 - (-1)^k/fibonacci(k))

Formula

Equals Product_{k>=2} (1 - (-1)^k/A000045(k)).
Equals A337668 / 12.
Equals (phi^(5/4)/3) * eta(4*tau_0) / eta(tau_0), where phi is the golden ratio (A001622), tau_0 = i*log(phi)/Pi, and i = sqrt(-1) (Duverney et al., 2022).

A371529 Decimal expansion of Product_{k>=2} (1 + (-1)^k/Lucas(k)).

Original entry on oeis.org

1, 0, 7, 2, 4, 8, 2, 7, 1, 7, 7, 5, 5, 1, 3, 0, 6, 2, 5, 8, 8, 5, 3, 7, 8, 8, 1, 6, 5, 2, 6, 6, 0, 8, 6, 9, 3, 0, 4, 3, 9, 2, 0, 4, 9, 3, 3, 3, 0, 9, 9, 2, 3, 6, 1, 3, 8, 5, 3, 2, 8, 7, 0, 9, 3, 9, 5, 9, 7, 6, 0, 7, 4, 3, 7, 7, 8, 3, 0, 4, 2, 5, 6, 5, 5, 8, 2, 3, 8, 9, 8, 1, 3, 1, 1, 4, 4, 8, 4, 0, 6, 4, 8, 4, 6
Offset: 1

Views

Author

Amiram Eldar, Mar 26 2024

Keywords

Examples

			1.07248271775513062588537881652660869304392049333099...
		

Crossrefs

Programs

  • Mathematica
    With[{eta = DedekindEta, tau0 = Log[GoldenRatio]*I/Pi}, RealDigits[(Surd[GoldenRatio, 4] / Sqrt[5]) * eta[2*tau0]^3 * eta[3*tau0] / (eta[tau0]^2 * eta[4*tau0]), 10, 120][[1]]]
  • PARI
    prodinf(k = 2, 1 + (-1)^k/(fibonacci(k-1) + fibonacci(k+1)))

Formula

Equals Product_{k>=2} (1 + (-1)^k/A000032(k)).
Equals A371525 / (2*sqrt(5)).
Equals (phi^(1/4) / sqrt(5)) * eta(2*tau_0)^3 * eta(3*tau_0) / (eta(tau_0)^2 * eta(4*tau_0)), where phi is the golden ratio (A001622), tau_0 = i*log(phi)/Pi, and i = sqrt(-1) (Duverney et al., 2022).

A371530 Decimal expansion of Product_{k>=1} (1 - (-1)^k/Lucas(k)).

Original entry on oeis.org

1, 5, 0, 2, 1, 8, 0, 0, 4, 4, 3, 3, 2, 4, 5, 6, 7, 6, 9, 1, 2, 0, 7, 6, 2, 5, 8, 1, 7, 6, 5, 5, 6, 9, 9, 8, 8, 0, 2, 7, 1, 5, 2, 5, 8, 0, 8, 8, 8, 8, 8, 3, 6, 4, 4, 5, 1, 5, 0, 1, 5, 5, 1, 1, 7, 0, 7, 8, 7, 4, 1, 9, 3, 3, 3, 7, 5, 9, 4, 6, 3, 2, 9, 9, 3, 4, 4, 3, 7, 1, 9, 2, 1, 5, 9, 4, 8, 3, 9, 2, 4, 1, 0, 8, 8
Offset: 1

Views

Author

Amiram Eldar, Mar 26 2024

Keywords

Examples

			1.50218004433245676912076258176556998802715258088888...
		

Crossrefs

Programs

  • Mathematica
    With[{eta = DedekindEta, tau0 = Log[GoldenRatio]*I/Pi}, RealDigits[2 * Surd[GoldenRatio, 4] * eta[2*tau0]^2 * eta[6*tau0]/(eta[3*tau0] * eta[4*tau0]), 10, 120][[1]]]
  • PARI
    prodinf(k = 1, 1 - (-1)^k/(fibonacci(k-1) + fibonacci(k+1)))

Formula

Equals Product_{k>=2} (1 - (-1)^k/A000032(k)).
Equals (2*sqrt(5)) * A371526.
Equals 2 * phi^(1/4) * eta(2*tau_0)^2 * eta(6*tau_0) / (eta(3*tau_0) * eta(4*tau_0)), where phi is the golden ratio (A001622), tau_0 = i*log(phi)/Pi, and i = sqrt(-1) (Duverney et al., 2022).

A371648 Decimal expansion of Product_{k>=0} (1 + 1/Fibonacci(5^k)).

Original entry on oeis.org

2, 4, 0, 0, 0, 3, 1, 9, 8, 9, 3, 3, 6, 8, 8, 7, 7, 0, 4, 0, 9, 8, 6, 3, 3, 8, 2, 9, 1, 2, 4, 5, 9, 0, 4, 4, 8, 8, 5, 5, 4, 9, 7, 8, 3, 1, 9, 3, 3, 8, 7, 6, 7, 8, 8, 4, 2, 5, 9, 6, 1, 1, 5, 6, 8, 7, 9, 3, 5, 0, 3, 7, 9, 0, 2, 9, 3, 0, 1, 3, 9, 6, 1, 0, 0, 0, 6, 4, 3, 0, 2, 5, 1, 3, 1, 8, 3, 6, 0, 7, 8, 0, 0, 4, 1
Offset: 1

Views

Author

Amiram Eldar, Mar 31 2024

Keywords

Comments

This constant is a transcendental number (Nyblom, 2004).

Examples

			2.40003198933688770409863382912459044885549783193387...
		

Crossrefs

Similar constants: A337668, A337669, A371650.

Programs

  • Mathematica
    RealDigits[Product[1 + 1/Fibonacci[5^k], {k, 0, 10}], 10, 120][[1]]
  • PARI
    prodinf(k = 0, 1 + 1/fibonacci(5^k))

Formula

Equals Product_{k>=0} (1 + 1/A145232(k)).
Showing 1-8 of 8 results.