A337716 Number of graphs, where vertices are labeled with positive integers summing to n, and where identically labeled vertices are indistinguishable and cannot be connected with an edge.
1, 1, 2, 4, 8, 16, 35, 77, 179, 440, 1160, 3264, 9950, 33206, 121943, 494011, 2235399, 11391306, 65287199, 422908306, 3130775625, 26490210964, 255257056748, 2825013955541, 36147331371446, 531237157370531, 8965348473026888
Offset: 0
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..50 (terms 0..30 from Max Alekseyev)
Crossrefs
Cf. A337717.
Programs
-
PARI
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m} cross(u, v) = {sum(i=1, #u, sum(j=1, #v, gcd(u[i], v[j])))} R(n,m,u)={if(n==0, 1, sum(k=if(m==1, n, 0), n\m, my(s=0); forpart(p=k, s+=self()(n-m*k, m-1, concat(u,Vec(p)))*2^cross(p,u)*permcount(p)); s/k!))} a(n)={R(n,n,[])} \\ Andrew Howroyd, Sep 18 2020