A303056
G.f. A(x) satisfies: 1 = Sum_{n>=0} ((1+x)^n - A(x))^n.
Original entry on oeis.org
1, 1, 1, 8, 89, 1326, 24247, 521764, 12867985, 357229785, 11017306489, 373675921093, 13825260663882, 554216064798423, 23934356706763264, 1108017262467214486, 54747529760516714323, 2876096694574711401525, 160092696678371426933342, 9413031424290635395882462, 583000844360279565483710624
Offset: 0
G.f.: A(x) = 1 + x + x^2 + 8*x^3 + 89*x^4 + 1326*x^5 + 24247*x^6 + 521764*x^7 + 12867985*x^8 + 357229785*x^9 + 11017306489*x^10 + ...
such that
1 = 1 + ((1+x) - A(x)) + ((1+x)^2 - A(x))^2 + ((1+x)^3 - A(x))^3 + ((1+x)^4 - A(x))^4 + ((1+x)^5 - A(x))^5 + ((1+x)^6 - A(x))^6 + ((1+x)^7 - A(x))^7 + ...
Also,
1 = 1/(1 + A(x)) + (1+x)/(1 + (1+x)*A(x))^2 + (1+x)^4/(1 + (1+x)^2*A(x))^3 + (1+x)^9/(1 + (1+x)^3*A(x))^4 + (1+x)^16/(1 + (1+x)^4*A(x))^5 + (1+x)^25/(1 + (1+x)^5*A(x))^6 + (1+x)^36/(1 + (1+x)^6*A(x))^7 + ...
RELATED SERIES.
log(A(x)) = x + x^2/2 + 22*x^3/3 + 325*x^4/4 + 6186*x^5/5 + 137380*x^6/6 + 3478651*x^7/7 + 98674253*x^8/8 + 3096911434*x^9/9 + ...
PARTICULAR VALUES.
Although the power series A(x) diverges at x = -1/2, it may be evaluated formally.
Let t = A(-1/2) = 0.545218973635949431234950245034944106957612798888179456724264...
then t satisfies
(1) 1 = Sum_{n>=0} ( 1/2^n - t )^n.
(2) 1 = Sum_{n>=0} 2^n / ( 2^n + t )^(n+1).
Also,
A(r) = 1/2 at r = -0.54683649902292991492196620520872286547799291909992048564578...
where
(1) 1 = Sum_{n>=0} ( (1+r)^n - 1/2 )^n.
(2) 1 = Sum_{n>=0} (1+r)^(-n) / ( 1/(1+r)^n + 1/2 )^(n+1).
-
{a(n) = my(A=[1]); for(i=0,n, A=concat(A,0); A[#A] = Vec( sum(m=0,#A, ((1+x)^m - Ser(A))^m ) )[#A] );A[n+1]}
for(n=0,30, print1(a(n),", "))
A337755
G.f. A(x) satisfies: 1 = Sum_{n>=0} (n+1) * 2^n * ((1+x)^n - A(x))^n.
Original entry on oeis.org
1, 1, 3, 52, 1320, 43440, 1722712, 79186272, 4118457732, 238450436416, 15189543467688, 1055122226778720, 79359687454230296, 6425540170275120528, 557306222539540276176, 51558846502494563714080, 5068865533417385007925076, 527798429103621760357553448, 58032815995114574483132149504
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 52*x^3 + 1320*x^4 + 43440*x^5 + 1722712*x^6 + 79186272*x^7 + 4118457732*x^8 + 238450436416*x^9 + ...
where
1 = 1 + 2*2*((1+x) - A(x)) + 3*2^2*((1+x)^2 - A(x))^2 + 4*2^3*((1+x)^3 - A(x))^3 + 5*2^4*((1+x)^4 - A(x))^4 + 6*2^5*((1+x)^5 - A(x))^5 + 7*2^6*((1+x)^6 - A(x))^6 + 8*2^7*((1+x)^7 - A(x))^7 + ... + (n+1)*2^n*((1+x)^n - A(x))^n + ...
Also,
1 = 1/(1 + 2*A(x))^2 + 2*2*(1+x)/(1 + 2*(1+x)*A(x))^3 + 3*2^2*(1+x)^4/(1 + 2*(1+x)^2*A(x))^4 + 4*2^3*(1+x)^9/(1 + 2*(1+x)^3*A(x))^5 + 5*2^4*(1+x)^16/(1 + 2*(1+x)^4*A(x))^6 + 6*2^5*(1+x)^25/(1 + 2*(1+x)^5*A(x))^7 + 7*2^6*(1+x)^36/(1 + 2*(1+x)^6*A(x))^8 + ... + (n+1)*2^n*(1+x)^(n^2)/(1 + 2*(1+x)^n*A(x))^(n+2) + ...
-
{a(n) = my(A=[1]); for(i=0, n, A=concat(A, 0); A[#A] = Vec( sum(m=0, #A, (m+1) * 2^m * ((1+x)^m - Ser(A))^m ) )[#A]/4 ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
A337757
G.f. A(x) satisfies: 1 = Sum_{n>=0} (n+1)*(n+2)*(n+3)/3! * 4^n * ((1+x)^n - A(x))^n.
Original entry on oeis.org
1, 1, 10, 460, 30250, 2488776, 240707480, 26452491760, 3233941091480, 433611348176880, 63118887464611936, 9899442124162104960, 1662993951689377716800, 297806177944353392091200, 56626969607275080551099520, 11394470658417110387020266496, 2419172929237326590857901776560, 540511078482106447677809541679680
Offset: 0
G.f.: A(x) = 1 + x + 10*x^2 + 460*x^3 + 30250*x^4 + 2488776*x^5 + 240707480*x^6 + 26452491760*x^7 + 3233941091480*x^8 + ...
where
1 = 1 + 4*4*((1+x) - A(x)) + 10*4^2*((1+x)^2 - A(x))^2 + 20*4^3*((1+x)^3 - A(x))^3 + 35*4^4*((1+x)^4 - A(x))^4 + 56*4^5*((1+x)^5 - A(x))^5 + 84*4^6*((1+x)^6 - A(x))^6 + 120*4^7*((1+x)^7 - A(x))^7 + ... + C(n+3,3)*4^n*((1+x)^n - A(x))^n + ...
Also,
1 = 1/(1 + 4*A(x))^4 + 4*4*(1+x)/(1 + 4*(1+x)*A(x))^5 + 10*4^2*(1+x)^4/(1 + (1+x)^2*A(x))^6 + 20*4^3*(1+x)^9/(1 + 4*(1+x)^3*A(x))^7 + 35*4^4*(1+x)^16/(1 + 4*(1+x)^4*A(x))^8 + 56*4^5*(1+x)^25/(1 + 4*(1+x)^5*A(x))^9 + 84*4^6*(1+x)^36/(1 + 4*(1+x)^6*A(x))^10 + ... + C(n+3,3)*4^n*(1+x)^(n^2)/(1 + 4*(1+x)^n*A(x))^(n+4) + ...
-
{a(n) = my(A=[1]); for(i=0, n, A=concat(A, 0); A[#A] = Vec( sum(m=0, #A, (m+1)*(m+2)*(m+3)/3! * 4^m * ((1+x)^m - Ser(A))^m ) )[#A]/16 ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
Showing 1-3 of 3 results.
Comments