A303056
G.f. A(x) satisfies: 1 = Sum_{n>=0} ((1+x)^n - A(x))^n.
Original entry on oeis.org
1, 1, 1, 8, 89, 1326, 24247, 521764, 12867985, 357229785, 11017306489, 373675921093, 13825260663882, 554216064798423, 23934356706763264, 1108017262467214486, 54747529760516714323, 2876096694574711401525, 160092696678371426933342, 9413031424290635395882462, 583000844360279565483710624
Offset: 0
G.f.: A(x) = 1 + x + x^2 + 8*x^3 + 89*x^4 + 1326*x^5 + 24247*x^6 + 521764*x^7 + 12867985*x^8 + 357229785*x^9 + 11017306489*x^10 + ...
such that
1 = 1 + ((1+x) - A(x)) + ((1+x)^2 - A(x))^2 + ((1+x)^3 - A(x))^3 + ((1+x)^4 - A(x))^4 + ((1+x)^5 - A(x))^5 + ((1+x)^6 - A(x))^6 + ((1+x)^7 - A(x))^7 + ...
Also,
1 = 1/(1 + A(x)) + (1+x)/(1 + (1+x)*A(x))^2 + (1+x)^4/(1 + (1+x)^2*A(x))^3 + (1+x)^9/(1 + (1+x)^3*A(x))^4 + (1+x)^16/(1 + (1+x)^4*A(x))^5 + (1+x)^25/(1 + (1+x)^5*A(x))^6 + (1+x)^36/(1 + (1+x)^6*A(x))^7 + ...
RELATED SERIES.
log(A(x)) = x + x^2/2 + 22*x^3/3 + 325*x^4/4 + 6186*x^5/5 + 137380*x^6/6 + 3478651*x^7/7 + 98674253*x^8/8 + 3096911434*x^9/9 + ...
PARTICULAR VALUES.
Although the power series A(x) diverges at x = -1/2, it may be evaluated formally.
Let t = A(-1/2) = 0.545218973635949431234950245034944106957612798888179456724264...
then t satisfies
(1) 1 = Sum_{n>=0} ( 1/2^n - t )^n.
(2) 1 = Sum_{n>=0} 2^n / ( 2^n + t )^(n+1).
Also,
A(r) = 1/2 at r = -0.54683649902292991492196620520872286547799291909992048564578...
where
(1) 1 = Sum_{n>=0} ( (1+r)^n - 1/2 )^n.
(2) 1 = Sum_{n>=0} (1+r)^(-n) / ( 1/(1+r)^n + 1/2 )^(n+1).
-
{a(n) = my(A=[1]); for(i=0,n, A=concat(A,0); A[#A] = Vec( sum(m=0,#A, ((1+x)^m - Ser(A))^m ) )[#A] );A[n+1]}
for(n=0,30, print1(a(n),", "))
A337755
G.f. A(x) satisfies: 1 = Sum_{n>=0} (n+1) * 2^n * ((1+x)^n - A(x))^n.
Original entry on oeis.org
1, 1, 3, 52, 1320, 43440, 1722712, 79186272, 4118457732, 238450436416, 15189543467688, 1055122226778720, 79359687454230296, 6425540170275120528, 557306222539540276176, 51558846502494563714080, 5068865533417385007925076, 527798429103621760357553448, 58032815995114574483132149504
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 52*x^3 + 1320*x^4 + 43440*x^5 + 1722712*x^6 + 79186272*x^7 + 4118457732*x^8 + 238450436416*x^9 + ...
where
1 = 1 + 2*2*((1+x) - A(x)) + 3*2^2*((1+x)^2 - A(x))^2 + 4*2^3*((1+x)^3 - A(x))^3 + 5*2^4*((1+x)^4 - A(x))^4 + 6*2^5*((1+x)^5 - A(x))^5 + 7*2^6*((1+x)^6 - A(x))^6 + 8*2^7*((1+x)^7 - A(x))^7 + ... + (n+1)*2^n*((1+x)^n - A(x))^n + ...
Also,
1 = 1/(1 + 2*A(x))^2 + 2*2*(1+x)/(1 + 2*(1+x)*A(x))^3 + 3*2^2*(1+x)^4/(1 + 2*(1+x)^2*A(x))^4 + 4*2^3*(1+x)^9/(1 + 2*(1+x)^3*A(x))^5 + 5*2^4*(1+x)^16/(1 + 2*(1+x)^4*A(x))^6 + 6*2^5*(1+x)^25/(1 + 2*(1+x)^5*A(x))^7 + 7*2^6*(1+x)^36/(1 + 2*(1+x)^6*A(x))^8 + ... + (n+1)*2^n*(1+x)^(n^2)/(1 + 2*(1+x)^n*A(x))^(n+2) + ...
-
{a(n) = my(A=[1]); for(i=0, n, A=concat(A, 0); A[#A] = Vec( sum(m=0, #A, (m+1) * 2^m * ((1+x)^m - Ser(A))^m ) )[#A]/4 ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
A337756
G.f. A(x) satisfies: 1 = Sum_{n>=0} (n+1)*(n+2)/2! * 3^n * ((1+x)^n - A(x))^n.
Original entry on oeis.org
1, 1, 6, 180, 7845, 434448, 28594494, 2157238350, 182404049175, 17026549342770, 1735705779016158, 191667825521201286, 22781050822806698709, 2899308092950790588988, 393385952195184523370994, 56691647586489579559334352, 8649001755741912766806347253, 1392791055204268736953260163092
Offset: 0
G.f.: A(x) = 1 + x + 6*x^2 + 180*x^3 + 7845*x^4 + 434448*x^5 + 28594494*x^6 + 2157238350*x^7 + 182404049175*x^8 + ...
where
1 = 1 + 3*3*((1+x) - A(x)) + 6*3^2*((1+x)^2 - A(x))^2 + 10*3^3*((1+x)^3 - A(x))^3 + 15*3^4*((1+x)^4 - A(x))^4 + 21*3^5*((1+x)^5 - A(x))^5 + 28*3^6*((1+x)^6 - A(x))^6 + 38*3^7*((1+x)^7 - A(x))^7 + ... + C(n+2,2)*3^n*((1+x)^n - A(x))^n + ...
Also,
1 = 1/(1 + 3*A(x))^3 + 3*3*(1+x)/(1 + 3*(1+x)*A(x))^4 + 6*3^2*(1+x)^4/(1 + 3*(1+x)^2*A(x))^5 + 10*3^3*(1+x)^9/(1 + 3*(1+x)^3*A(x))^6 + 15*3^4*(1+x)^16/(1 + 3*(1+x)^4*A(x))^7 + 21*3^5*(1+x)^25/(1 + 3*(1+x)^5*A(x))^8 + 28*3^6*(1+x)^36/(1 + 3*(1+x)^6*A(x))^9 + ... + C(n+2,2)*3^n*(1+x)^(n^2)/(1 + 3*(1+x)^n*A(x))^(n+3) + ...
-
{a(n) = my(A=[1]); for(i=0, n, A=concat(A, 0); A[#A] = Vec( sum(m=0, #A, (m+1)*(m+2)/2! * 3^m * ((1+x)^m - Ser(A))^m ) )[#A]/9 ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
Showing 1-3 of 3 results.
Comments