cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337818 Odd integers k>=3 such that k*(k-1)/2 divides 2^((k-1)/2)+1.

Original entry on oeis.org

3, 19, 163, 1459, 370387, 6381667, 30001267, 40417219, 42384547, 42633379, 86093443, 190008019, 268435459, 634471219, 1630068787, 2415919123, 3103616899, 4677743683, 7734924739, 7920392707, 8114552947, 10323768979, 13086951139, 13984274323, 18839387107, 19764019603, 36164859427
Offset: 1

Views

Author

Benoit Cloitre, Sep 23 2020

Keywords

Comments

Computed terms are prime. Is it always the case? If not it would be interesting to compute the pseudoprimes.
Conjecture: a(n) == 1 mod 162 for n >= 6. The next few larger terms of the form 162*k+1 are: 44165935747, 46696027123, 85683674179, 88567070707, 101297654083, 131264938963, 131315541283, 177876176419, 195689448883, 196838306227, 213339588643, 310256425603, 378897238243, 502106519683, 588454831747, 611537689459, 641551809187, 735075731107, 745956214867, 755236606483, 771153067603, 872146803043 (and they are all primes). - Chai Wah Wu, Oct 06 2020
The conjecture fails, as a(30) = 48269073907 (prime). - Bill McEachen, Jul 11 2025

Programs

  • Mathematica
    Select[Range[3, 400000, 2], PowerMod[2, (# - 1)/2, (t = #*(# - 1)/2)] == t - 1 &] (* Amiram Eldar, Sep 23 2020 *)
  • PARI
    is(n) = n%2 && n>=3 && Mod(2, n*(n-1)/2)^((n-1)/2) == -1 \\ David A. Corneth, Sep 23 2020

Extensions

a(7)-a(27) from Amiram Eldar, Sep 23 2020