cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A337846 Odd integers k such that 2^((k-1)/2) == 1 (mod k*(k-2)).

Original entry on oeis.org

17, 257, 457, 1297, 6481, 11953, 26321, 47521, 47881, 49681, 65537, 74449, 157081, 165601, 278497, 333433, 476737, 557041, 560737, 576721, 1033057, 1266841, 1329337, 1463617, 1468897, 2291041, 2422201, 2754481, 2851633, 2969137, 3255281
Offset: 1

Views

Author

Benoit Cloitre, Sep 26 2020

Keywords

Comments

Computed terms are prime. Is this a possible primality test or are there pseudo primes? Terms are of the form 8k+1.
The Fermat number F(5) = A000215(5) = 4294967297 = 641*6700417 is the smallest composite counterexample. - Hugo Pfoertner, Sep 26 2020

Crossrefs

Programs

  • Mathematica
    Select[Range[3, 10^6, 2], PowerMod[2, (# - 1)/2, #*(# - 2)] == 1 &] (* Amiram Eldar, Sep 26 2020 *)
  • PARI
    is(n) = n%2 && n>=3 && Mod(2, n*(n-2))^((n-1)/2) == 1

A337829 Odd integers k such that 5^((k-1)/2) + 1 == 0 (mod k*(k-1)/2).

Original entry on oeis.org

3, 7, 43, 53, 127, 163, 487, 677, 883, 2647, 8527, 8803, 14407, 18523, 26407, 32887, 35323, 39367, 71443, 105967, 184087, 184843, 230203, 265483, 319327, 388963, 425083, 543607, 554527, 651043, 688087, 690607, 698923, 796447, 887923, 924043, 1001323
Offset: 1

Views

Author

Benoit Cloitre, Sep 24 2020

Keywords

Comments

The first 564 terms are prime.

Crossrefs

Cf. A337818.

Programs

  • Mathematica
    Select[Range[3, 10^6, 2], PowerMod[5, (# - 1)/2, (t = #*(# - 1)/2)] == t - 1 &] (* Amiram Eldar, Sep 24 2020 *)

A337848 Odd integers k>=5 such that 2^((k-1)/2)-1 == 0 (mod k*(k-3)/2).

Original entry on oeis.org

73, 241, 2593, 5113, 8713, 18433, 53593, 55681, 86113, 102241, 126337, 127873, 158113, 181721, 184369, 186049, 208393, 219313, 221537, 241921, 262657, 267913, 282313, 314161, 314401, 341641, 362521, 398441, 415873, 450913, 534241, 619921, 651169, 731881, 953473, 1045801, 1153441, 1294177, 1554281, 2023921, 2162401, 2345401, 2533681
Offset: 1

Views

Author

Benoit Cloitre, Sep 26 2020

Keywords

Comments

Computed terms are prime. Is it always the case? If not it would be interesting to compute the pseudoprimes.
1234125721 = 24841*49681, 4294901761 = 193*22253377, 6602556241 = 57457*114913 are composite counterexamples to the assumption that all terms are prime. - Hugo Pfoertner, Sep 26 2020
These are a(420), a(705) and a(830). Together with a(956) = 10025492401 = 101 * 701 * 141601 they are the first 4 composite terms. - Amiram Eldar, Jun 17 2022

Crossrefs

Cf. A337818.

Programs

  • Mathematica
    Select[Range[5, 10^6, 2], PowerMod[2, (# - 1)/2, #*(# - 3)/2] == 1 &] (* Amiram Eldar, Sep 26 2020 *)
  • PARI
    is(n) = n%2 && n>=3 && Mod(2, n*(n-3)/2)^((n-1)/2) ==1

A337858 Integers k>=3 such that 2^k == 2 (mod k*(k-1)*(k-2)/6).

Original entry on oeis.org

3, 5, 37, 101, 44101, 3766141, 8122501, 18671941, 35772661, 36969661, 208168381, 425420101, 725862061, 778003381, 818423101, 1269342901, 9049716901, 27221068981, 60138957061, 125980182901, 137330493301, 314912454781, 315322826869, 478543291381, 667933881301
Offset: 1

Views

Author

Benoit Cloitre, Sep 26 2020

Keywords

Comments

Computed terms are prime. Is it always the case? If not it would be interesting to compute the smallest pseudoprime.
It seems that all larger terms are of the form 180*k + 1, starting at a(5) = 44101 = 180*245 + 1. - Hugo Pfoertner, Sep 27 2020
Other terms of the form 180*k+1 (which are all prime): 60138957061, 125980182901, 137330493301, 478543291381, 667933881301, 700212813301, 701030830501, 720023604301, 766514618101, 778382658901. - Chai Wah Wu, Oct 06 2020

Crossrefs

Programs

  • Mathematica
    Select[Range[3, 10^7], PowerMod[2, #, #*(# - 1)*(# - 2)/6] == 2 &] (* Amiram Eldar, Sep 27 2020 *)
  • PARI
    is(n) = n>=3 && Mod(2, n*(n-1)*(n-2)/6)^n ==2

Extensions

a(12)-a(18) from Amiram Eldar, Sep 27 2020
a(19)-a(25) from Delbert L. Johnson, Mar 27 2024

A337828 Odd integers k such that 3^((k-1)/2) + 1 == 0 (mod k*(k-1)/2).

Original entry on oeis.org

5, 101, 62501, 1020101, 31562501, 139476101, 637562501, 789062501, 985502501, 2656262501, 7455062501, 19726562501, 53662562501
Offset: 1

Views

Author

Benoit Cloitre, Sep 24 2020

Keywords

Comments

Computed terms are prime.

Crossrefs

Cf. A337818.

Programs

  • Mathematica
    Select[Range[3, 3*10^7, 2], PowerMod[3, (# - 1)/2, (t = #*(# - 1)/2)] == t - 1 &] (* Amiram Eldar, Sep 24 2020 *)

Extensions

a(7)-a(13) from Amiram Eldar, Sep 25 2020

A337830 Odd integers k such that 6^((k-1)/2) + 1 == 0 (mod k*(k-1)/2).

Original entry on oeis.org

2843, 2390123, 9893003, 16236347, 46353707, 334358459, 564092747, 584214107, 1640200619, 2010092603, 14044030043, 22315857803, 23753097803, 92758244699, 136542051227, 281195463179, 332945964107, 545960571227
Offset: 1

Views

Author

Benoit Cloitre, Sep 24 2020

Keywords

Comments

Computed terms are prime.
Conjecture: a(n) == 1 mod 406 for n > 5. - Chai Wah Wu, Oct 07 2020

Crossrefs

Cf. A337818.

Programs

  • Mathematica
    Select[Range[3, 10^7, 2], PowerMod[6, (# - 1)/2, (t = #*(# - 1)/2)] == t - 1 &] (* Amiram Eldar, Sep 24 2020 *)

Extensions

a(6)-a(13) from Amiram Eldar, Sep 24 2020
a(14)-a(15) from Bill McEachen, Jul 21 2025
a(16)-a(18) from Bill McEachen, Aug 03 2025

A337831 Odd integers k such that 7^((k-1)/2) + 1 == 0 (mod k*(k-1)/2).

Original entry on oeis.org

5, 101, 62501, 1020101, 3512501, 12650501, 22598021, 31562501, 365328101, 789062501, 11412000101, 64014060101
Offset: 1

Views

Author

Benoit Cloitre, Sep 24 2020

Keywords

Comments

Computed terms are prime.

Crossrefs

Cf. A337818.

Programs

  • Mathematica
    Select[Range[3, 10^7, 2], PowerMod[7, (# - 1)/2, (t = #*(# - 1)/2)] == t - 1 &] (* Amiram Eldar, Sep 24 2020 *)

Extensions

a(9)-a(12) from Amiram Eldar, Sep 25 2020

A337847 Odd integers k such that 3^((k-1)/2) == 1 (mod k*(k-2)).

Original entry on oeis.org

457, 1297, 6481, 14401, 26497, 44101, 47521, 47881, 165601, 225457, 446881, 560737, 576721, 677041, 1037857, 1049941, 1649341, 1903981, 1934137, 2291041, 3990601, 4110121, 4262161, 4663297, 4736341, 5293081, 5317057, 5372929, 6410497, 6535681, 6651361, 8122501
Offset: 1

Views

Author

Benoit Cloitre, Sep 26 2020

Keywords

Comments

Computed terms are prime. Is this a possible primality test or are there pseudo primes? Terms are of the form 12k+1.

Crossrefs

Programs

  • Mathematica
    Select[Range[3, 10^6, 2], PowerMod[3, (# - 1)/2, #*(# - 2)] == 1 &] (* Amiram Eldar, Sep 26 2020 *)
  • PARI
    is(n) = n%2 && n>=3 && Mod(3, n*(n-2))^((n-1)/2) == 1

Extensions

More terms from Amiram Eldar, Sep 26 2020

A337859 k-1 for integers k>=4 such that 2^k == 4 (mod k*(k-1)*(k-2)*(k-3)/24).

Original entry on oeis.org

3, 5, 37, 44101, 157081, 2031121, 7282801, 8122501, 18671941, 78550201, 208168381, 770810041, 2658625201, 2710529641, 5241663001, 14643783001, 18719308441, 56181482281, 73303609681, 74623302001, 110102454001, 140659081201
Offset: 1

Views

Author

Benoit Cloitre, Sep 26 2020

Keywords

Comments

Computed terms are prime. Is it always the case? Probably not and it would be interesting to compute the smallest pseudoprime.
It seems that all larger terms are of the form 60*k + 1, starting at a(4) = 44101 = 60*735 + 1. Further terms of this form after a(17) are 56181482281, 73303609681, 74623302001, 110102454001, 140659081201, 283268822761, 469078212241, 530106748081, 570417709681, 701030830501, 720023604301; all are prime. - Hugo Pfoertner, Sep 28 2020

Crossrefs

Programs

  • Mathematica
    Select[Range[4, 10^7], (t = #*(# - 1)*(# - 2)*(# - 3)/24) == 1 || PowerMod[2, #, t] == 4 &] - 1 (* Amiram Eldar, Sep 27 2020 *)
  • PARI
    is(k) = k>=4 && Mod(2,k*(k-1)*(k-2)*(k-3)/24)^k == 4

Extensions

a(13)-a(17) from Amiram Eldar, Sep 27 2020
a(18)-a(22) from Chai Wah Wu, Oct 09 2020
Showing 1-9 of 9 results.