A338117 Number of partitions of n into two parts (s,t) such that (t-s) | n, where s < t.
0, 0, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 1, 1, 3, 3, 1, 2, 1, 3, 3, 1, 1, 5, 2, 1, 3, 3, 1, 3, 1, 4, 3, 1, 3, 5, 1, 1, 3, 5, 1, 3, 1, 3, 5, 1, 1, 7, 2, 2, 3, 3, 1, 3, 3, 5, 3, 1, 1, 7, 1, 1, 5, 5, 3, 3, 1, 3, 3, 3, 1, 8, 1, 1, 5, 3, 3, 3, 1, 7, 4, 1, 1, 7, 3, 1, 3, 5, 1, 5, 3, 3, 3
Offset: 1
Examples
a(8) = 2; The partitions of 8 into two parts (s,t) such that s < t are (7,1), (6,2), (5,3) and (4,4). Only the partitions (6,2) and (5,3) have (6-2) | 8 and (5-3) | 8, so a(8) = 2.
Links
Programs
-
Mathematica
Table[Sum[(1 - Ceiling[n/(n - 2 i)] + Floor[n/(n - 2 i)]), {i, Floor[(n - 1)/2]}], {n, 100}]
-
PARI
for(n=1,85,my(j=0);forpart(x=n,if(#x==2,if(x[2]!=x[1]&&!(n%(x[2]-x[1])),j++)));print1(j,", ")) \\ Hugo Pfoertner, Oct 30 2020
-
PARI
A338117(n) = sum(s=1,(n-1)\2,!(n%(n-(2*s)))); \\ Antti Karttunen, Dec 12 2021
Formula
a(n) = Sum_{i=1..floor((n-1)/2)} (1 - ceiling(n/(n-2*i)) + floor(n/(n-2*i))).
Comments