cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338395 Numbers m such that lcm(tau(m), sigma(m), pod(m)) = pod(m).

Original entry on oeis.org

1, 6, 30, 66, 84, 102, 120, 210, 270, 318, 330, 420, 462, 510, 546, 570, 642, 672, 690, 714, 840, 870, 924, 930, 966, 1080, 1092, 1122, 1320, 1410, 1428, 1518, 1590, 1638, 1722, 1770, 1890, 1932, 2040, 2130, 2226, 2280, 2310, 2346, 2370, 2604, 2670, 2730, 2760
Offset: 1

Views

Author

Jaroslav Krizek, Oct 23 2020

Keywords

Comments

Numbers m such that A336723(m)= lcm(A000005(m), A000203(m), A007955(m)) = A007955(m).
Numbers m such that both values tau(m) and sigma(m) divide pod(m).
Numbers m such that all values m, tau(m) and sigma(m) divide pod(m); i.e. lcm(m, tau(m), sigma(m), pod(m)) = pod(m).
Supersequence of A277521.

Examples

			lcm(tau(6), sigma(6), pod(6)) = lcm(4, 12, 36) = 36 = pod(6).
		

Crossrefs

Cf. A000005 (tau), A000203 (sigma), A007955 (pod).

Programs

  • Magma
    [m: m in [1..10^5] | LCM([#Divisors(m), &+Divisors(m), &*Divisors(m)]) eq &*Divisors(m)]
    
  • Mathematica
    Select[Range[3000], LCM @@ {(d = DivisorSigma[0, #]), DivisorSigma[1, #], (pod = #^(d/2))} == pod &] (* Amiram Eldar, Oct 24 2020 *)
  • PARI
    isok(m) = my(d=divisors(m), prd=vecprod(d)); lcm([#d, vecsum(d), prd]) == prd; \\ Michel Marcus, Oct 24 2020