cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338651 Number of divisors of n which are greater than 7.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 3, 2, 2, 1, 4, 1, 2, 2, 4, 1, 3, 1, 3, 3, 2, 1, 5, 1, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 6, 1, 2, 3, 4, 2, 4, 1, 3, 2, 4, 1, 7, 1, 2, 3, 3, 2, 4, 1, 6, 3, 2, 1, 6, 2, 2, 2, 5, 1, 7, 2, 3, 2, 2, 2, 7, 1, 3, 4, 5, 1, 4, 1, 5, 4, 2, 1, 7, 1, 5
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 22 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, 1 &, # > 7 &], {n, 1, 110}]
    nmax = 110; CoefficientList[Series[Sum[x^(8 k)/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Drop[#, 1] &
    nmax = 110; CoefficientList[Series[-Log[Product[(1 - x^k)^(1/k), {k, 8, nmax}]], {x, 0, nmax}], x] Range[0, nmax] // Drop[#, 1] &
  • PARI
    a(n) = sumdiv(n, d, d>7); \\ Michel Marcus, Apr 22 2021
    
  • PARI
    my(N=100, x='x+O('x^N)); concat([0, 0, 0, 0, 0, 0, 0], Vec(sum(k=8, N, x^k/(1-x^k)))) \\ Seiichi Manyama, Jan 07 2023

Formula

G.f.: Sum_{k>=1} x^(8*k) / (1 - x^k).
L.g.f.: -log( Product_{k>=8} (1 - x^k)^(1/k) ).
G.f.: Sum_{k>=8} x^k/(1 - x^k). - Seiichi Manyama, Jan 07 2023
Sum_{k=1..n} a(k) ~ n * (log(n) + 2*gamma - 503/140), where gamma is Euler's constant (A001620). - Amiram Eldar, Jan 08 2024

Extensions

a(1)-a(7) prepended by David A. Corneth, Jun 13 2022