A338762 Greatest prime Fibonacci divisor of F(n)^2 + 1 where F(n) is the n-th Fibonacci number, or 0 if no such prime factor exists.
2, 2, 5, 5, 13, 13, 5, 13, 89, 89, 233, 233, 89, 233, 1597, 1597, 5, 1597, 1597, 13, 28657, 28657, 13, 28657, 28657, 5, 514229, 514229, 2, 514229, 514229, 89, 13, 89, 89, 13, 233, 233, 0, 233, 433494437, 433494437, 5, 433494437, 2971215073, 2971215073, 13, 2971215073
Offset: 1
Keywords
Examples
a(6) = 13 because F(6)^2 + 1 = 8^2 + 1 = 65 = 5*13 and 13 is the greatest prime Fibonacci divisor.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..5384 (n = 1..1000 from Alois P. Heinz)
Programs
-
Maple
a:= proc(n) local F, m, t; F, m, t:= [1, 2], 0, (<<0|1>, <1|1>>^n)[2, 1]^2+1; while F[2]<=t do if isprime(F[2]) and irem(t, F[2])=0 then m:=F[2] fi; F:= [F[2], F[1]+F[2]] od; m end: seq(a(n), n=1..50); # Alois P. Heinz, Nov 07 2020
-
Mathematica
a[n_] := Module[{F, m, t}, F = {1, 2}; m = 0; t = MatrixPower[{{0, 1}, {1, 1}}, n][[2, 1]]^2 + 1; While[F[[2]] <= t, If[PrimeQ[F[[2]]] && Mod[t, F[[2]]] == 0, m = F[[2]]]; F = {F[[2]], F[[1]] + F[[2]]}]; m]; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Feb 09 2025, after Alois P. Heinz *)
-
PARI
isfib(n) = my(k=n^2); k+=(k+1)<<2; issquare(k) || (n>0 && issquare(k-8)); a(n) = my(f=factor(fibonacci(n)^2+1)[,1]~, v=select(x->isfib(x), f)); if (#v, vecmax(v), 0); \\ Michel Marcus, Nov 07 2020
Comments