cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A339461 Number of Fibonacci divisors of n^2 + 1.

Original entry on oeis.org

1, 2, 2, 3, 1, 3, 1, 3, 3, 2, 1, 2, 2, 4, 1, 2, 1, 3, 3, 2, 1, 4, 2, 3, 1, 2, 1, 3, 2, 2, 1, 3, 2, 3, 3, 2, 1, 3, 2, 2, 1, 2, 2, 3, 2, 2, 1, 5, 2, 2, 1, 2, 2, 3, 1, 4, 1, 4, 2, 2, 2, 2, 2, 3, 1, 2, 1, 3, 2, 2, 3, 2, 2, 4, 1, 2, 1, 3, 2, 2, 1, 3, 2, 4, 1, 2, 2
Offset: 0

Views

Author

Michel Lagneau, Dec 06 2020

Keywords

Examples

			a(13) = 4 because the divisors of 13^2 + 1 = 170 are {1, 2, 5, 10, 17, 34, 85, 170} with 4 Fibonacci divisors: 1, 2, 5 and 34.
		

Crossrefs

Programs

  • Maple
    with(numtheory):with(combinat,fibonacci):nn:=100:F:={}:
    for k from 1 to nn do:
      F:=F union {fibonacci(k)}:
    od:
       for n from 0 to 90 do:
        f:=n^2+1:d:=divisors(f):
        lst:= F intersect d: n1:=nops(lst):printf(`%d, `,n1):
       od:
  • Mathematica
    Array[DivisorSum[#^2 + 1, 1 &, Or @@ Map[IntegerQ@ Sqrt[#] &, 5 #^2 + 4 {-1, 1}] &] &, 105, 0] (* Michael De Vlieger, Dec 07 2020 *)
  • PARI
    isfib(n) = my(k=n^2); k+=(k+1)<<2; issquare(k) || issquare(k-8);
    a(n) = sumdiv(n^2+1, d, isfib(d)); \\ Michel Marcus, Dec 06 2020

Formula

a(A005574(n)) = 1 for n > 2.
a(n) = A005086(A002522(n)). - Michel Marcus, Dec 06 2020

A338794 Indices k of Fibonacci numbers F(k) such that F(k)^2 + 1 has no Fibonacci prime factor.

Original entry on oeis.org

39, 60, 69, 72, 99, 102, 105, 108, 111, 150, 165, 180, 192, 195, 198, 225, 228, 231, 240, 270, 279, 282, 309, 312, 315, 348, 351, 381, 399, 420, 441, 459, 462, 465, 489, 501, 522, 588, 591, 600, 615, 618, 642, 645, 660, 675, 702, 741, 759, 771, 810, 822, 825, 828
Offset: 1

Views

Author

Michel Lagneau, Nov 09 2020

Keywords

Comments

Numbers k such that A338762(k) = 0.

Examples

			39 is in the sequence because F(39)^2 + 1 = 63245986^2 + 1 = 73*149*2221*2789*59369 with no Fibonacci prime factors.
38 is not in the sequence because F(38)^2 + 1 = 39088169^2 + 1 =  2*73*149*233*2221*135721. The numbers and 2, 233 are Fibonacci prime factors.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) local F, m, t; F, m, t:=
          [1, 2], 0, (<<0|1>, <1|1>>^n)[2, 1]^2+1;
          while F[2]<=t do if isprime(F[2]) and irem(t, F[2])=0
            then m:=F[2] fi; F:= [F[2], F[1]+F[2]]
          od; m
        end:
    for n from 1 to 100 do :
    if a(n)=0 then printf(`%d, `,n):else fi:
    od: # program from Alois P. Heinz, adapted for the sequence. See A338762.
  • Mathematica
    A338762[n_] := Module[{F, m, t}, F = {1, 2}; m = 0; t = MatrixPower[{{0, 1}, {1, 1}}, n][[2, 1]]^2 + 1; While[F[[2]] <= t, If[PrimeQ[F[[2]]] && Mod[t, F[[2]]] == 0, m = F[[2]]]; F = {F[[2]], F[[1]] + F[[2]]}]; m];
    Reap[For[k = 1, k <= 1000, k++, If[A338762[k] == 0, Print[k]; Sow[k]]]][[2, 1]] (* Jean-François Alcover, Mar 16 2025, after Alois P. Heinz *)
  • PARI
    isok(n) = {my(i=0, f=0, x=fibonacci(n)^2+1, m=0); while(f < x, i++; f = fibonacci(i); if (ispseudoprime(f) && (x%f) == 0, return (0));); return(1);} \\ Michel Marcus, Nov 13 2020

A335568 a(n) is the number m such that F(m) is the greatest prime Fibonacci divisor of F(n)^2 + 1 where F(n) is the n-th Fibonacci number, or 0 if no such prime factor exists.

Original entry on oeis.org

3, 3, 5, 5, 7, 7, 5, 7, 11, 11, 13, 13, 11, 13, 17, 17, 5, 17, 17, 7, 23, 23, 7, 23, 23, 5, 29, 29, 3, 29, 29, 11, 7, 11, 11, 7, 13, 13, 0, 13, 43, 43, 5, 43, 47, 47, 7, 47, 47, 17, 7, 17, 17, 11, 3, 11, 11, 3, 3, 0, 7, 7, 13, 13, 7, 13, 23, 23, 0, 23, 23, 0, 5
Offset: 1

Views

Author

Chai Wah Wu, Nov 20 2020

Keywords

Comments

Fibonacci index of the terms in A338762.
All terms are prime or 0. - Alois P. Heinz, Nov 21 2020

Examples

			a(10) = 11 because F(10)^2 + 1 = 55^2 + 1 = 3026 = 2*17*89 and 89 = F(11) is the greatest prime Fibonacci divisor of 3026.
		

Crossrefs

Cf. A000040, A000045, A005478, A245306, A338762, A338794 (indices of the 0's).

Programs

  • Maple
    a:= proc(n) local i, F, m, t; F, m, t:=
          [1, 2], 0, (<<0|1>, <1|1>>^n)[2, 1]^2+1;
          for i from 3 while F[2]<=t do if isprime(F[2]) and
            irem(t, F[2])=0 then m:=i fi; F:= [F[2], F[1]+F[2]]
          od; m
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Nov 21 2020
  • Mathematica
    a[n_] := Module[{i, F = {1, 2}, m = 0, t}, t = MatrixPower[{{0, 1}, {1, 1}}, n][[2, 1]]^2 + 1; For[i = 3, F[[2]] <= t, i++, If[PrimeQ[F[[2]]] && Mod[t, F[[2]]] == 0, m = i]; F = {F[[2]], F[[1]] + F[[2]]}]; m];
    Array[a, 100] (* Jean-François Alcover, Dec 01 2020, after Alois P. Heinz *)

Formula

A000045(a(n)) = A338762(n).

A339082 a(n) is the number m such that F(prime(m)) is the greatest prime Fibonacci divisor of F(n)^2 + 1 where F(n) is the n-th Fibonacci number, or 0 if no such prime factor exists.

Original entry on oeis.org

2, 2, 3, 3, 4, 4, 3, 4, 5, 5, 6, 6, 5, 6, 7, 7, 3, 7, 7, 4, 9, 9, 4, 9, 9, 3, 10, 10, 2, 10, 10, 5, 4, 5, 5, 4, 6, 6, 0, 6, 14, 14, 3, 14, 15, 15, 4, 15, 15, 7, 4, 7, 7, 5, 2, 5, 5, 2, 2, 0, 4, 4, 6, 6, 4, 6, 9, 9, 0, 9, 9, 0, 3, 3, 5, 5, 3, 5, 5, 2, 23, 23, 7
Offset: 1

Views

Author

Chai Wah Wu, Nov 24 2020

Keywords

Comments

If a(n) > 0, then prime(a(n)) = A335568(n).

Examples

			a(15) = 7 because F(15)^2 + 1 = 610^2 + 1 = 372101 = 233*1597, 1597 = F(17) is the greatest prime Fibonacci divisor of 372101 and 17 is the 7th prime.
		

Crossrefs

Cf. A000040, A000045, A005478, A245306, A335568, A338762, A338794 (indices of the 0's).

Programs

  • Maple
    a:= proc(n) local i, F, m, t; F, m, t:=
          [1, 2], 0, (<<0|1>, <1|1>>^n)[2, 1]^2+1;
          for i from 3 while F[2]<=t do if isprime(F[2]) and
            irem(t, F[2])=0 then m:=i fi; F:= [F[2], F[1]+F[2]]
          od; numtheory[pi](m)
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Nov 25 2020
  • Mathematica
    a[n_] := Module[{i, F = {1, 2}, m = 0, t}, t = MatrixPower[{{0, 1}, {1, 1}}, n][[2, 1]]^2 + 1; For[i = 3, F[[2]] <= t, i++, If[PrimeQ[F[[2]]] && Mod[t, F[[2]]] == 0, m = i]; F = {F[[2]], F[[1]] + F[[2]]}]; PrimePi[m]];
    Array[a, 100] (* Jean-François Alcover, Dec 01 2020, after Alois P. Heinz *)

Formula

If A335568(n) = 0, then a(n) = 0, otherwise a(n) = A000720(A335568(n)).

A352290 Numbers m such that the greatest prime factor of m^2 + 1 is a Fibonacci number.

Original entry on oeis.org

1, 2, 3, 5, 7, 8, 18, 34, 55, 57, 89, 123, 144, 233, 239, 322, 377, 411, 500, 568, 610, 746, 788, 843, 987, 1487, 1542, 1568, 1636, 2207, 2584, 2707, 3173, 3639, 3793, 3804, 3817, 4050, 4181, 4217, 4594, 4662, 5270, 5778, 6107, 6613, 8595, 8972, 10341, 10569
Offset: 1

Views

Author

Michel Lagneau, Mar 11 2022

Keywords

Comments

A281618 is a subsequence.
The corresponding greatest prime Fibonacci factors of the sequence are 2, 5, 5, 13, 5, 13, 13, 89, 89, 13, 233, 89, 233, ...
The Fibonacci numbers of the sequence are 1, 2, 3, 5, 8, 34, 55, 89, 144, 233, 377, 610, 987, 2584, 4181, 10946, 17711, ... (subsequence of A000045).
The Lucas numbers of the sequence are 1, 2, 3, 7, 18, 123, 322, 843, 2207, 5778, 39603, 103682, ... (subsequence of A000032).
The prime numbers of the sequence are 2, 3, 5, 7, 89, 233, 239, 1487, 2207, 2707, 3793, 4217, 11789, 11981, 13763, ... including the prime Fibonacci numbers 2, 3, 5, 89, 233, 1066340417491710595814572169, ... (subsequence of A005478).

Examples

			18 is in the sequence because 18^2 + 1 = 5^2*13 and 13 is a Fibonacci number.
		

Crossrefs

Programs

  • Maple
    q:= n-> (t-> ormap(issqr, [t+4, t-4]))(5*max(numtheory[factorset](n^2+1))^2):
    select(q, [$1..12000])[];  # Alois P. Heinz, Mar 11 2022
  • Mathematica
    With[{f = Fibonacci[Range[21]], m = f[[-1]]}, Select[Range[m], MemberQ[f, FactorInteger[#^2 + 1][[-1, 1]]] &]] (* Amiram Eldar, Mar 11 2022 *)
  • PARI
    isfib(n) = my(k=n^2); k+=(k+1)<<2; issquare(k) || (n>0 && issquare(k-8));
    isok(m) = isfib(vecmax(factor(m^2+1)[,1])); \\ Michel Marcus, Mar 11 2022

A360107 Numbers k such that sigma_2(Fibonacci(k)^2 + 1) == 0 (mod Fibonacci(k)).

Original entry on oeis.org

1, 2, 3, 5, 7, 9, 11, 13, 15, 19, 21, 25, 27, 31, 41, 45, 49, 81, 85, 129, 133, 135, 139, 357, 361, 429, 431, 433, 435, 447, 451, 507, 511, 567, 569, 571, 573
Offset: 1

Views

Author

Michel Lagneau, Jan 26 2023

Keywords

Examples

			7 is in the sequence because the divisors of Fibonacci(7)^2 + 1 = 13^2 + 1 = 170 are {1, 2, 5, 10, 17, 34, 85, 170}, and 1^2 + 2^2 + 5^2 + 10^2 + 17^2 + 34^2 + 85^2 + 170^2 = 37700 = 13*2900 == 0 (mod 13).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[140],Divisible[DivisorSigma[2,Fibonacci[#]^2+1],Fibonacci[#]]&]
  • PARI
    isok(k) = my(f=fibonacci(k)); sigma(f^2 + 1, 2) % f == 0; \\ Michel Marcus, Jan 26 2023

Extensions

a(24)-a(37) from Daniel Suteu, Jan 27 2023

A339173 Index of record values of A339082.

Original entry on oeis.org

1, 3, 5, 9, 11, 15, 21, 27, 41, 45, 81, 129, 135, 357, 429, 431, 447, 507, 567, 569, 2969, 4721, 5385, 9309, 9675, 14429, 25559, 30755, 35997, 37509, 50831, 81837, 104909, 130019, 148089, 201105, 397377, 433779, 590039, 593687, 604709, 931515, 1049895, 1285605, 1636005, 1803057, 1968719, 2904351, 3244367, 3340365
Offset: 1

Views

Author

Chai Wah Wu, Nov 25 2020

Keywords

Comments

Also index of record values of A335568.

Crossrefs

Formula

A339082(a(n)) = A119984(n).
For n > 1, a(n) = A001605(n+1)-2.
Showing 1-7 of 7 results.