A339461 Number of Fibonacci divisors of n^2 + 1.
1, 2, 2, 3, 1, 3, 1, 3, 3, 2, 1, 2, 2, 4, 1, 2, 1, 3, 3, 2, 1, 4, 2, 3, 1, 2, 1, 3, 2, 2, 1, 3, 2, 3, 3, 2, 1, 3, 2, 2, 1, 2, 2, 3, 2, 2, 1, 5, 2, 2, 1, 2, 2, 3, 1, 4, 1, 4, 2, 2, 2, 2, 2, 3, 1, 2, 1, 3, 2, 2, 3, 2, 2, 4, 1, 2, 1, 3, 2, 2, 1, 3, 2, 4, 1, 2, 2
Offset: 0
Keywords
Examples
a(13) = 4 because the divisors of 13^2 + 1 = 170 are {1, 2, 5, 10, 17, 34, 85, 170} with 4 Fibonacci divisors: 1, 2, 5 and 34.
Links
- Michel Marcus, Table of n, a(n) for n = 0..10000
Programs
-
Maple
with(numtheory):with(combinat,fibonacci):nn:=100:F:={}: for k from 1 to nn do: F:=F union {fibonacci(k)}: od: for n from 0 to 90 do: f:=n^2+1:d:=divisors(f): lst:= F intersect d: n1:=nops(lst):printf(`%d, `,n1): od:
-
Mathematica
Array[DivisorSum[#^2 + 1, 1 &, Or @@ Map[IntegerQ@ Sqrt[#] &, 5 #^2 + 4 {-1, 1}] &] &, 105, 0] (* Michael De Vlieger, Dec 07 2020 *)
-
PARI
isfib(n) = my(k=n^2); k+=(k+1)<<2; issquare(k) || issquare(k-8); a(n) = sumdiv(n^2+1, d, isfib(d)); \\ Michel Marcus, Dec 06 2020
Formula
a(A005574(n)) = 1 for n > 2.
Comments