cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338794 Indices k of Fibonacci numbers F(k) such that F(k)^2 + 1 has no Fibonacci prime factor.

Original entry on oeis.org

39, 60, 69, 72, 99, 102, 105, 108, 111, 150, 165, 180, 192, 195, 198, 225, 228, 231, 240, 270, 279, 282, 309, 312, 315, 348, 351, 381, 399, 420, 441, 459, 462, 465, 489, 501, 522, 588, 591, 600, 615, 618, 642, 645, 660, 675, 702, 741, 759, 771, 810, 822, 825, 828
Offset: 1

Views

Author

Michel Lagneau, Nov 09 2020

Keywords

Comments

Numbers k such that A338762(k) = 0.

Examples

			39 is in the sequence because F(39)^2 + 1 = 63245986^2 + 1 = 73*149*2221*2789*59369 with no Fibonacci prime factors.
38 is not in the sequence because F(38)^2 + 1 = 39088169^2 + 1 =  2*73*149*233*2221*135721. The numbers and 2, 233 are Fibonacci prime factors.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) local F, m, t; F, m, t:=
          [1, 2], 0, (<<0|1>, <1|1>>^n)[2, 1]^2+1;
          while F[2]<=t do if isprime(F[2]) and irem(t, F[2])=0
            then m:=F[2] fi; F:= [F[2], F[1]+F[2]]
          od; m
        end:
    for n from 1 to 100 do :
    if a(n)=0 then printf(`%d, `,n):else fi:
    od: # program from Alois P. Heinz, adapted for the sequence. See A338762.
  • Mathematica
    A338762[n_] := Module[{F, m, t}, F = {1, 2}; m = 0; t = MatrixPower[{{0, 1}, {1, 1}}, n][[2, 1]]^2 + 1; While[F[[2]] <= t, If[PrimeQ[F[[2]]] && Mod[t, F[[2]]] == 0, m = F[[2]]]; F = {F[[2]], F[[1]] + F[[2]]}]; m];
    Reap[For[k = 1, k <= 1000, k++, If[A338762[k] == 0, Print[k]; Sow[k]]]][[2, 1]] (* Jean-François Alcover, Mar 16 2025, after Alois P. Heinz *)
  • PARI
    isok(n) = {my(i=0, f=0, x=fibonacci(n)^2+1, m=0); while(f < x, i++; f = fibonacci(i); if (ispseudoprime(f) && (x%f) == 0, return (0));); return(1);} \\ Michel Marcus, Nov 13 2020