A338794 Indices k of Fibonacci numbers F(k) such that F(k)^2 + 1 has no Fibonacci prime factor.
39, 60, 69, 72, 99, 102, 105, 108, 111, 150, 165, 180, 192, 195, 198, 225, 228, 231, 240, 270, 279, 282, 309, 312, 315, 348, 351, 381, 399, 420, 441, 459, 462, 465, 489, 501, 522, 588, 591, 600, 615, 618, 642, 645, 660, 675, 702, 741, 759, 771, 810, 822, 825, 828
Offset: 1
Keywords
Examples
39 is in the sequence because F(39)^2 + 1 = 63245986^2 + 1 = 73*149*2221*2789*59369 with no Fibonacci prime factors. 38 is not in the sequence because F(38)^2 + 1 = 39088169^2 + 1 = 2*73*149*233*2221*135721. The numbers and 2, 233 are Fibonacci prime factors.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
Programs
-
Maple
a:= proc(n) local F, m, t; F, m, t:= [1, 2], 0, (<<0|1>, <1|1>>^n)[2, 1]^2+1; while F[2]<=t do if isprime(F[2]) and irem(t, F[2])=0 then m:=F[2] fi; F:= [F[2], F[1]+F[2]] od; m end: for n from 1 to 100 do : if a(n)=0 then printf(`%d, `,n):else fi: od: # program from Alois P. Heinz, adapted for the sequence. See A338762.
-
Mathematica
A338762[n_] := Module[{F, m, t}, F = {1, 2}; m = 0; t = MatrixPower[{{0, 1}, {1, 1}}, n][[2, 1]]^2 + 1; While[F[[2]] <= t, If[PrimeQ[F[[2]]] && Mod[t, F[[2]]] == 0, m = F[[2]]]; F = {F[[2]], F[[1]] + F[[2]]}]; m]; Reap[For[k = 1, k <= 1000, k++, If[A338762[k] == 0, Print[k]; Sow[k]]]][[2, 1]] (* Jean-François Alcover, Mar 16 2025, after Alois P. Heinz *)
-
PARI
isok(n) = {my(i=0, f=0, x=fibonacci(n)^2+1, m=0); while(f < x, i++; f = fibonacci(i); if (ispseudoprime(f) && (x%f) == 0, return (0));); return(1);} \\ Michel Marcus, Nov 13 2020
Comments