cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338860 The excess of the number of partitions of n with more odd parts than even parts over the number of partitions of n with more even parts than odd parts.

Original entry on oeis.org

0, 1, 0, 2, 1, 3, 4, 6, 8, 11, 17, 21, 30, 38, 53, 68, 90, 115, 150, 192, 243, 312, 390, 496, 613, 775, 951, 1193, 1456, 1810, 2200, 2715, 3285, 4026, 4856, 5909, 7106, 8595, 10301, 12394, 14809, 17728, 21118, 25171, 29891, 35489, 42018, 49702, 58678, 69180
Offset: 0

Views

Author

Jeremy Lovejoy, Jan 12 2021

Keywords

Examples

			The 3 partitions of 4 with more odd parts than even parts are [3,1], [2,1,1], and [1,1,1,1], while the 2 partitions of 4 with more even parts than odd parts are [4] and [2,2].   Hence a(4) = 3-2 = 1.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, signum(t), `if`(i<1, 0,
          b(n, i-1, t)+ b(n-i, min(n-i, i), t+(2*irem(i, 2)-1))))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..55);  # Alois P. Heinz, Jan 14 2021
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n == 0, Sign[t], If[i < 1, 0,
       b[n, i-1, t] + b[n-i, Min[n-i, i], t + (2*Mod[i, 2]-1)]]];
    a[n_] := b[n, n, 0];
    Table[a[n], {n, 0, 55}] (* Jean-François Alcover, Sep 09 2022, after Alois P. Heinz *)
  • PARI
    for(n=0,43,my(me=0,mo=0);forpart(v=n,my(x=Vec(v),se=sum(k=1,#x,x[k]%2==0),so=sum(k=1,#x,x[k]%2>0));me+=(se>so);mo+=(so>se));print1(mo-me,", ")) \\ Hugo Pfoertner, Jan 13 2021

Formula

G.f.: (Product_{k>=1} 1/(1-x^(2*k-1)))*Sum_{n>=1} q^(2*n^2-n)*(1-q^n)/Product_{k=1..n} (1-q^(2*k))^2.
a(n) = A108950(n) - A108949(n).