A338999 Number of connected multigraphs with n edges and rooted at two indistinguishable vertices whose removal leaves a connected graph.
1, 1, 3, 11, 43, 180, 804, 3763, 18331, 92330, 478795, 2547885, 13880832, 77284220, 439146427, 2543931619, 15010717722, 90154755356, 550817917537, 3421683388385, 21601986281226, 138548772267326, 902439162209914, 5967669851051612, 40053432076016812
Offset: 1
Keywords
Examples
The a(3) = 3 CDE-descendants of A-Z with 3 edges are . A A A ( ) / / o o - o o - o | / \ Z Z Z . DCC DD DE .
References
- Technology Review's Puzzle Corner, How many different resistances can be obtained by combining 10 one ohm resistors? Oct 3, 2003.
Links
- Joel Karnofsky, Solution of problem from Technology Review's Puzzle Corner Oct 3, 2003, Feb 23, 2004.
Programs
-
PARI
\\ See A339065 for G. InvEulerT(v)={my(p=log(1+x*Ser(v))); dirdiv(vector(#v,n,polcoef(p,n)), vector(#v,n,1/n))} seq(n)={my(A=O(x*x^n), g=G(2*n, x+A,[]), gr=G(2*n, x+A,[1])/g, u=InvEulerT(Vec(-1+G(2*n, x+A,[1,1])/(g*gr^2))), t=InvEulerT(Vec(-1+G(2*n, x+A,[2])/(g*subst(gr,x,x^2)))), v=vector(n)); for(n=1, #v, v[n]=(u[n]+t[n]-if(n%2==0,u[n/2]-v[n/2]))/2); v} \\ Andrew Howroyd, Nov 20 2020
Extensions
a(7)-a(25) from Andrew Howroyd, Nov 20 2020
Comments