A338911
Numbers of the form prime(x) * prime(y) where x and y are both even.
Original entry on oeis.org
9, 21, 39, 49, 57, 87, 91, 111, 129, 133, 159, 169, 183, 203, 213, 237, 247, 259, 267, 301, 303, 321, 339, 361, 371, 377, 393, 417, 427, 453, 481, 489, 497, 519, 543, 551, 553, 559, 579, 597, 623, 669, 687, 689, 703, 707, 717, 749, 753, 789, 791, 793, 813, 817
Offset: 1
The sequence of terms together with their prime indices begins:
9: {2,2} 237: {2,22} 481: {6,12}
21: {2,4} 247: {6,8} 489: {2,38}
39: {2,6} 259: {4,12} 497: {4,20}
49: {4,4} 267: {2,24} 519: {2,40}
57: {2,8} 301: {4,14} 543: {2,42}
87: {2,10} 303: {2,26} 551: {8,10}
91: {4,6} 321: {2,28} 553: {4,22}
111: {2,12} 339: {2,30} 559: {6,14}
129: {2,14} 361: {8,8} 579: {2,44}
133: {4,8} 371: {4,16} 597: {2,46}
159: {2,16} 377: {6,10} 623: {4,24}
169: {6,6} 393: {2,32} 669: {2,48}
183: {2,18} 417: {2,34} 687: {2,50}
203: {4,10} 427: {4,18} 689: {6,16}
213: {2,20} 453: {2,36} 703: {8,12}
A338910 is the odd instead of even version.
A001221 counts distinct prime indices.
A300912 lists semiprimes with relatively prime indices.
A318990 lists semiprimes with divisible indices.
A338904 groups semiprimes by weight.
A338909 lists semiprimes with non-relatively prime indices.
Cf.
A005117,
A037143,
A055684,
A056239,
A065516,
A112798,
A128301,
A195017,
A320655,
A320732,
A320892,
A338898,
A339002,
A339003.
-
q:= n-> (l-> add(i[2], i=l)=2 and andmap(i->
numtheory[pi](i[1])::even, l))(ifactors(n)[2]):
select(q, [$1..1000])[]; # Alois P. Heinz, Nov 23 2020
-
Select[Range[100],PrimeOmega[#]==2&&OddQ[Times@@(1+PrimePi/@First/@FactorInteger[#])]&]
-
from math import isqrt
from sympy import primerange, primepi
def A338911(n):
def bisection(f,kmin=0,kmax=1):
while f(kmax) > kmax: kmax <<= 1
kmin = kmax >> 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def f(x): return n+x-sum(primepi(x//p)-a>>1 for a,p in enumerate(primerange(isqrt(x)+1),-1) if a&1^1)
return bisection(f,n,n) # Chai Wah Wu, Apr 03 2025
A339003
Numbers of the form prime(x) * prime(y) where x and y are distinct and both odd.
Original entry on oeis.org
10, 22, 34, 46, 55, 62, 82, 85, 94, 115, 118, 134, 146, 155, 166, 187, 194, 205, 206, 218, 235, 253, 254, 274, 295, 298, 314, 334, 335, 341, 358, 365, 382, 391, 394, 415, 422, 451, 454, 466, 482, 485, 514, 515, 517, 527, 538, 545, 554, 566, 614, 626, 635, 649
Offset: 1
The sequence of terms together with their prime indices begins:
10: {1,3} 187: {5,7} 358: {1,41} 527: {7,11}
22: {1,5} 194: {1,25} 365: {3,21} 538: {1,57}
34: {1,7} 205: {3,13} 382: {1,43} 545: {3,29}
46: {1,9} 206: {1,27} 391: {7,9} 554: {1,59}
55: {3,5} 218: {1,29} 394: {1,45} 566: {1,61}
62: {1,11} 235: {3,15} 415: {3,23} 614: {1,63}
82: {1,13} 253: {5,9} 422: {1,47} 626: {1,65}
85: {3,7} 254: {1,31} 451: {5,13} 635: {3,31}
94: {1,15} 274: {1,33} 454: {1,49} 649: {5,17}
115: {3,9} 295: {3,17} 466: {1,51} 662: {1,67}
118: {1,17} 298: {1,35} 482: {1,53} 685: {3,33}
134: {1,19} 314: {1,37} 485: {3,25} 694: {1,69}
146: {1,21} 334: {1,39} 514: {1,55} 697: {7,13}
155: {3,11} 335: {3,19} 515: {3,27} 706: {1,71}
166: {1,23} 341: {5,11} 517: {5,15} 713: {9,11}
A338910 is the not necessarily squarefree version.
A339004 is the even instead of odd version.
A300912 lists products of two primes of relatively prime index.
A320656 counts factorizations into squarefree semiprimes.
A338904 groups semiprimes by weight.
A339002 lists products of two distinct primes of non-relatively prime index.
A339005 lists products of two distinct primes of divisible index.
Cf.
A001221,
A001222,
A056239,
A112798,
A166237,
A195017,
A318990,
A320911,
A338901,
A338903,
A338911.
-
Select[Range[100],SquareFreeQ[#]&&PrimeOmega[#]==2&&OddQ[Times@@PrimePi/@First/@FactorInteger[#]]&]
-
from math import isqrt
from sympy import primepi, primerange
def A339003(n):
def bisection(f,kmin=0,kmax=1):
while f(kmax) > kmax: kmax <<= 1
kmin = kmax >> 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def f(x): return n+x-sum(primepi(x//p)-a>>1 for a,p in enumerate(primerange(isqrt(x)+1),1) if a&1)
return bisection(f,n,n) # Chai Wah Wu, Apr 03 2025
A339004
Numbers of the form prime(x) * prime(y) where x and y are distinct and both even.
Original entry on oeis.org
21, 39, 57, 87, 91, 111, 129, 133, 159, 183, 203, 213, 237, 247, 259, 267, 301, 303, 321, 339, 371, 377, 393, 417, 427, 453, 481, 489, 497, 519, 543, 551, 553, 559, 579, 597, 623, 669, 687, 689, 703, 707, 717, 749, 753, 789, 791, 793, 813, 817, 843, 879, 917
Offset: 1
The sequence of terms together with their prime indices begins:
21: {2,4} 267: {2,24} 543: {2,42}
39: {2,6} 301: {4,14} 551: {8,10}
57: {2,8} 303: {2,26} 553: {4,22}
87: {2,10} 321: {2,28} 559: {6,14}
91: {4,6} 339: {2,30} 579: {2,44}
111: {2,12} 371: {4,16} 597: {2,46}
129: {2,14} 377: {6,10} 623: {4,24}
133: {4,8} 393: {2,32} 669: {2,48}
159: {2,16} 417: {2,34} 687: {2,50}
183: {2,18} 427: {4,18} 689: {6,16}
203: {4,10} 453: {2,36} 703: {8,12}
213: {2,20} 481: {6,12} 707: {4,26}
237: {2,22} 489: {2,38} 717: {2,52}
247: {6,8} 497: {4,20} 749: {4,28}
259: {4,12} 519: {2,40} 753: {2,54}
A338911 is the not necessarily squarefree version.
A339003 is the odd instead of even version, with not necessarily squarefree version
A338910.
A300912 lists products of pairs of primes with relatively prime indices.
A318990 lists products of pairs of primes with divisible indices.
A320656 counts factorizations into squarefree semiprimes.
A338904 groups semiprimes by weight.
Cf.
A000040,
A001221,
A001222,
A056239,
A112798,
A166237,
A195017,
A320911,
A338901,
A338903,
A339002.
-
Select[Range[100],SquareFreeQ[#]&&PrimeOmega[#]==2&&OddQ[Times@@(1+ PrimePi/@First/@FactorInteger[#])]&]
-
from math import isqrt
from sympy import primepi, primerange
def A339004(n):
def bisection(f,kmin=0,kmax=1):
while f(kmax) > kmax: kmax <<= 1
kmin = kmax >> 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def f(x): return n+x-sum(primepi(x//p)-a>>1 for a,p in enumerate(primerange(isqrt(x)+1),1) if a&1^1)
return bisection(f,n,n) # Chai Wah Wu, Apr 03 2025
A339005
Numbers of the form prime(x) * prime(y) where x properly divides y. Squarefree semiprimes with divisible prime indices.
Original entry on oeis.org
6, 10, 14, 21, 22, 26, 34, 38, 39, 46, 57, 58, 62, 65, 74, 82, 86, 87, 94, 106, 111, 115, 118, 122, 129, 133, 134, 142, 146, 158, 159, 166, 178, 183, 185, 194, 202, 206, 213, 214, 218, 226, 235, 237, 254, 259, 262, 267, 274, 278, 298, 302, 303, 305, 314, 319
Offset: 1
The sequence of terms together with their prime indices begins:
6: {1,2} 82: {1,13} 159: {2,16} 259: {4,12}
10: {1,3} 86: {1,14} 166: {1,23} 262: {1,32}
14: {1,4} 87: {2,10} 178: {1,24} 267: {2,24}
21: {2,4} 94: {1,15} 183: {2,18} 274: {1,33}
22: {1,5} 106: {1,16} 185: {3,12} 278: {1,34}
26: {1,6} 111: {2,12} 194: {1,25} 298: {1,35}
34: {1,7} 115: {3,9} 202: {1,26} 302: {1,36}
38: {1,8} 118: {1,17} 206: {1,27} 303: {2,26}
39: {2,6} 122: {1,18} 213: {2,20} 305: {3,18}
46: {1,9} 129: {2,14} 214: {1,28} 314: {1,37}
57: {2,8} 133: {4,8} 218: {1,29} 319: {5,10}
58: {1,10} 134: {1,19} 226: {1,30} 321: {2,28}
62: {1,11} 142: {1,20} 235: {3,15} 326: {1,38}
65: {3,6} 146: {1,21} 237: {2,22} 334: {1,39}
74: {1,12} 158: {1,22} 254: {1,31} 339: {2,30}
A300912 is the version for relative primality.
A318990 is the not necessarily squarefree version.
A339002 is the version for non-relative primality.
A339003 is the version for odd indices.
A339004 is the version for even indices
A320655 counts factorizations into semiprimes.
A320656 counts factorizations into squarefree semiprimes.
A338909
Numbers of the form prime(x) * prime(y) where x and y have a common divisor > 1.
Original entry on oeis.org
9, 21, 25, 39, 49, 57, 65, 87, 91, 111, 115, 121, 129, 133, 159, 169, 183, 185, 203, 213, 235, 237, 247, 259, 267, 289, 299, 301, 303, 305, 319, 321, 339, 361, 365, 371, 377, 393, 417, 427, 445, 453, 481, 489, 497, 515, 517, 519, 529, 543, 551, 553, 559, 565
Offset: 1
The sequence of terms together with their prime indices begins:
9: {2,2} 169: {6,6} 319: {5,10}
21: {2,4} 183: {2,18} 321: {2,28}
25: {3,3} 185: {3,12} 339: {2,30}
39: {2,6} 203: {4,10} 361: {8,8}
49: {4,4} 213: {2,20} 365: {3,21}
57: {2,8} 235: {3,15} 371: {4,16}
65: {3,6} 237: {2,22} 377: {6,10}
87: {2,10} 247: {6,8} 393: {2,32}
91: {4,6} 259: {4,12} 417: {2,34}
111: {2,12} 267: {2,24} 427: {4,18}
115: {3,9} 289: {7,7} 445: {3,24}
121: {5,5} 299: {6,9} 453: {2,36}
129: {2,14} 301: {4,14} 481: {6,12}
133: {4,8} 303: {2,26} 489: {2,38}
159: {2,16} 305: {3,18} 497: {4,20}
A082023 counts partitions with these as Heinz numbers, complement
A023022.
A001221 counts distinct prime indices.
A004526 counts 2-part partitions, with strict case
A140106 (shifted left).
A318990 lists semiprimes with divisible indices.
A320655 counts factorizations into semiprimes.
A338910 lists semiprimes with odd indices.
A338911 lists semiprimes with even indices.
Cf.
A005117,
A037143,
A055684,
A056239,
A065516,
A112798,
A115392,
A128301,
A289182,
A338900,
A338904.
A339361
Product of prime indices of the n-th squarefree semiprime.
Original entry on oeis.org
2, 3, 4, 6, 8, 5, 6, 10, 7, 12, 8, 12, 9, 14, 15, 16, 10, 11, 18, 18, 12, 20, 13, 21, 14, 20, 24, 22, 15, 24, 16, 24, 27, 17, 28, 18, 26, 28, 32, 19, 30, 20, 30, 30, 21, 33, 22, 32, 36, 23, 34, 24, 36, 36, 35, 25, 38, 26, 40, 39, 27, 40, 40, 28, 42, 44, 29, 42
Offset: 1
The sequence of all squarefree semiprimes together with the products of their prime indices begins:
6: 1 * 2 = 2
10: 1 * 3 = 3
14: 1 * 4 = 4
15: 2 * 3 = 6
21: 2 * 4 = 8
22: 1 * 5 = 5
26: 1 * 6 = 6
33: 2 * 5 = 10
34: 1 * 7 = 7
35: 3 * 4 = 12
A003963 gives the product of prime indices of n.
A006881 lists squarefree semiprimes.
A025129 is the sum of squarefree semiprimes of weight n.
A332765/
A339114 give the greatest/least squarefree semiprime of weight n.
A338905 groups squarefree semiprimes by weight.
A339116 groups squarefree semiprimes by greater prime factor.
Cf.
A001221,
A046388,
A056239 (weight),
A112798,
A166237,
A320656,
A320911,
A338901,
A339002,
A339003,
A339004.
-
Table[Times@@PrimePi/@First/@FactorInteger[n],{n,Select[Range[100],SquareFreeQ[#]&&PrimeOmega[#]==2&]}]
Showing 1-6 of 6 results.
Comments