cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339237 Decimal expansion of K = Sum_{m>=0} 1/(1 + 2*m + 4*m^2).

Original entry on oeis.org

1, 2, 7, 9, 7, 2, 8, 7, 4, 2, 2, 8, 1, 8, 9, 6, 8, 3, 3, 6, 4, 7, 2, 7, 5, 7, 0, 1, 5, 0, 7, 6, 3, 0, 6, 7, 2, 2, 6, 2, 6, 0, 3, 6, 7, 5, 0, 7, 5, 7, 8, 2, 6, 1, 9, 3, 0, 6, 8, 3, 0, 5, 8, 8, 1, 6, 9, 3, 0, 6, 6, 0, 7, 2, 2, 1, 3, 6, 4, 9, 0, 6, 6, 2, 1, 1, 5, 3, 2, 9, 9, 0, 5, 3, 5, 3, 2, 2, 7, 3, 7, 1, 9, 7, 1, 3, 2, 9, 2, 3
Offset: 1

Views

Author

Artur Jasinski, Nov 28 2020

Keywords

Comments

This constant K and the constant J = A339135 allow the expression of the real and imaginary parts of:
Psi(1/4 + i*sqrt(3)/4) = - J - log(2)/3 - (1/2)*Pi/cosh(Pi*sqrt(3)/2) + i*sqrt(3)*K;
Psi(-1/4 + i*sqrt(3)/4) = 1 - J - log(2)/3 + (1/2)*Pi/cosh(Pi*sqrt(3)/2) + i*(sqrt(3) - sqrt(3)*K + Pi*tanh(Pi*sqrt(3)/2));
Psi(3/4 + i*sqrt(3)/4)= - J - i*sqrt(3)*k - log(2)/3 + (1/2)*Pi/cosh(Pi*sqrt(3)/4) + i*Pi*tanh(Pi*sqrt(3)/2).
Psi(-3/4 + i*sqrt(3)/4) = 1 - J - log(2)/3 - (1/2)*Pi/cosh(Pi*sqrt(3)/2) + i*(sqrt(3)/3 + sqrt(3)*K).
where Psi is the digamma function and i=sqrt(-1).

Examples

			1.27972874228189683364727570150763067226260...
		

Crossrefs

Cf. A054569 (terms), A339135.

Programs

  • Maple
    K:= Re(sum(1/(1+2*n+4*n^2), n=0..infinity)):
    evalf(K, 120);  # Alois P. Heinz, Dec 06 2020
  • Mathematica
    RealDigits[N[Re[Sum[1/(1 + 2*n + 4*n^2), {n, 0, Infinity}]], 110]][[1]]
  • PARI
    sumpos(n=0, 1/(1+2*n+4*n^2)) \\ Michel Marcus, Nov 28 2020

Formula

Equals -i/(2*sqrt(3)) * (Psi(1/4 + i*sqrt(3)/4) - Psi(1/4 - i*sqrt(3)/4)).
Equals Pi*sqrt(3)*tanh(Pi*sqrt(3)/2)/3 - Sum_{m>=0} 1/(3 + 6*m + 4*m^2).