A339237 Decimal expansion of K = Sum_{m>=0} 1/(1 + 2*m + 4*m^2).
1, 2, 7, 9, 7, 2, 8, 7, 4, 2, 2, 8, 1, 8, 9, 6, 8, 3, 3, 6, 4, 7, 2, 7, 5, 7, 0, 1, 5, 0, 7, 6, 3, 0, 6, 7, 2, 2, 6, 2, 6, 0, 3, 6, 7, 5, 0, 7, 5, 7, 8, 2, 6, 1, 9, 3, 0, 6, 8, 3, 0, 5, 8, 8, 1, 6, 9, 3, 0, 6, 6, 0, 7, 2, 2, 1, 3, 6, 4, 9, 0, 6, 6, 2, 1, 1, 5, 3, 2, 9, 9, 0, 5, 3, 5, 3, 2, 2, 7, 3, 7, 1, 9, 7, 1, 3, 2, 9, 2, 3
Offset: 1
Examples
1.27972874228189683364727570150763067226260...
Programs
-
Maple
K:= Re(sum(1/(1+2*n+4*n^2), n=0..infinity)): evalf(K, 120); # Alois P. Heinz, Dec 06 2020
-
Mathematica
RealDigits[N[Re[Sum[1/(1 + 2*n + 4*n^2), {n, 0, Infinity}]], 110]][[1]]
-
PARI
sumpos(n=0, 1/(1+2*n+4*n^2)) \\ Michel Marcus, Nov 28 2020
Formula
Equals -i/(2*sqrt(3)) * (Psi(1/4 + i*sqrt(3)/4) - Psi(1/4 - i*sqrt(3)/4)).
Equals Pi*sqrt(3)*tanh(Pi*sqrt(3)/2)/3 - Sum_{m>=0} 1/(3 + 6*m + 4*m^2).
Comments