cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A339353 G.f.: Sum_{k>=1} k^2 * x^(k*(k + 1)) / (1 - x^k).

Original entry on oeis.org

0, 1, 1, 1, 1, 5, 1, 5, 1, 5, 1, 14, 1, 5, 10, 5, 1, 14, 1, 21, 10, 5, 1, 30, 1, 5, 10, 21, 1, 39, 1, 21, 10, 5, 26, 30, 1, 5, 10, 46, 1, 50, 1, 21, 35, 5, 1, 66, 1, 30, 10, 21, 1, 50, 26, 70, 10, 5, 1, 91, 1, 5, 59, 21, 26, 50, 1, 21, 10, 79, 1, 130, 1, 5, 35, 21, 50, 50, 1, 110
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 01 2020

Keywords

Comments

Sum of squares of divisors of n that are smaller than sqrt(n).

Crossrefs

Programs

  • Mathematica
    nmax = 80; CoefficientList[Series[Sum[k^2 x^(k (k + 1))/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    Table[DivisorSum[n, #^2 &, # < Sqrt[n] &], {n, 80}]
  • PARI
    a(n) = sumdiv(n, d, if (d^2 < n, d^2)); \\ Michel Marcus, Dec 02 2020

A347142 Sum of 4th powers of divisors of n that are < sqrt(n).

Original entry on oeis.org

0, 1, 1, 1, 1, 17, 1, 17, 1, 17, 1, 98, 1, 17, 82, 17, 1, 98, 1, 273, 82, 17, 1, 354, 1, 17, 82, 273, 1, 723, 1, 273, 82, 17, 626, 354, 1, 17, 82, 898, 1, 1394, 1, 273, 707, 17, 1, 1650, 1, 642, 82, 273, 1, 1394, 626, 2674, 82, 17, 1, 2275, 1, 17, 2483, 273, 626
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 19 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, #^4 &, # < Sqrt[n] &], {n, 1, 65}]
    nmax = 65; CoefficientList[Series[Sum[k^4 x^(k (k + 1))/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
  • PARI
    A347142(n) = { my(s=0); fordiv(n,d,if((d^2)>=n,return(s)); s += (d^4)); }; \\ Antti Karttunen, Aug 19 2021

Formula

G.f.: Sum_{k>=1} k^4 * x^(k*(k + 1)) / (1 - x^k).

A347162 Sum of cubes of odd divisors of n that are < sqrt(n).

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 28, 1, 1, 28, 1, 1, 28, 1, 1, 28, 1, 1, 28, 1, 1, 28, 1, 1, 153, 1, 1, 28, 1, 126, 28, 1, 1, 28, 126, 1, 28, 1, 1, 153, 1, 1, 28, 1, 126, 28, 1, 1, 28, 126, 344, 28, 1, 1, 153, 1, 1, 371, 1, 126, 28, 1, 1, 28, 469, 1, 28, 1, 1, 153
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 20 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, #^3 &, # < Sqrt[n] && OddQ[#] &], {n, 1, 75}]
    nmax = 75; CoefficientList[Series[Sum[(2 k - 1)^3 x^(2 k (2 k - 1))/(1 - x^(2 k - 1)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    scod[n_]:=Total[Select[Divisors[n],#Harvey P. Dale, Jan 07 2022 *)
  • PARI
    a(n) = my(r=sqrt(n)); sumdiv(n, d, if ((d%2) && (dMichel Marcus, Aug 21 2021

Formula

G.f.: Sum_{k>=1} (2*k - 1)^3 * x^(2*k*(2*k - 1)) / (1 - x^(2*k - 1)).

A347157 Sum of cubes of distinct prime divisors of n that are < sqrt(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 8, 0, 8, 0, 8, 0, 35, 0, 8, 27, 8, 0, 35, 0, 8, 27, 8, 0, 35, 0, 8, 27, 8, 0, 160, 0, 8, 27, 8, 125, 35, 0, 8, 27, 133, 0, 35, 0, 8, 152, 8, 0, 35, 0, 133, 27, 8, 0, 35, 125, 351, 27, 8, 0, 160, 0, 8, 370, 8, 125, 35, 0, 8, 27, 476, 0, 35, 0, 8, 152
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 20 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, #^3 &, # < Sqrt[n] && PrimeQ[#] &], {n, 1, 75}]
    nmax = 75; CoefficientList[Series[Sum[Prime[k]^3 x^(Prime[k] (Prime[k] + 1))/(1 - x^Prime[k]), {k, 1, nmax}], {x, 0, nmax}], x] // Rest

Formula

G.f.: Sum_{k>=1} prime(k)^3 * x^(prime(k)*(prime(k) + 1)) / (1 - x^prime(k)).
Showing 1-4 of 4 results.