cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A339373 Number of partitions of n into an even number of triangular numbers.

Original entry on oeis.org

1, 0, 1, 0, 2, 0, 3, 1, 3, 2, 4, 3, 6, 5, 6, 6, 10, 7, 13, 10, 15, 13, 20, 15, 26, 21, 28, 26, 36, 31, 44, 42, 49, 50, 61, 57, 75, 73, 84, 85, 103, 97, 123, 121, 137, 140, 166, 159, 194, 194, 216, 225, 256, 253, 295, 304, 330, 346, 389, 387, 446, 456, 498, 516, 579, 576
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 02 2020

Keywords

Examples

			a(6) = 3 because we have [3, 3], [3, 1, 1, 1] and [1, 1, 1, 1, 1, 1].
		

Crossrefs

Programs

  • Mathematica
    nmax = 65; CoefficientList[Series[(1/2) (Product[1/(1 - x^(k (k + 1)/2)), {k, 1, nmax}] + Product[1/(1 + x^(k (k + 1)/2)), {k, 1, nmax}]), {x, 0, nmax}], x]

Formula

G.f.: (1/2) * (Product_{k>=1} 1 / (1 - x^(k*(k + 1)/2)) + Product_{k>=1} 1 / (1 + x^(k*(k + 1)/2))).
a(n) = (A007294(n) + A292519(n)) / 2.

A339375 Number of partitions of n into an even number of distinct triangular numbers.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 2, 0, 1, 0, 1, 1, 1, 0, 1, 2, 0, 1, 0, 2, 0, 3, 1, 0, 2, 1, 1, 1, 3, 1, 2, 0, 2, 2, 0, 2, 3, 3, 1, 2, 2, 2, 2, 2, 1, 4, 4, 1, 3, 2, 3, 2, 3, 1, 5, 4, 2, 4, 2, 4, 4, 3, 2, 6, 4, 3, 4, 5, 2, 3, 6, 5, 6, 5, 4, 5, 5, 4, 5, 6, 4
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 02 2020

Keywords

Examples

			a(31) = 3 because we have [28, 3], [21, 10] and [21, 6, 3, 1].
		

Crossrefs

Programs

  • Mathematica
    nmax = 90; CoefficientList[Series[(1/2) (Product[(1 + x^(k (k + 1)/2)), {k, 1, nmax}] + Product[(1 - x^(k (k + 1)/2)), {k, 1, nmax}]), {x, 0, nmax}], x]

Formula

G.f.: (1/2) * (Product_{k>=1} (1 + x^(k*(k + 1)/2)) + Product_{k>=1} (1 - x^(k*(k + 1)/2))).
a(n) = (A024940(n) + A292518(n)) / 2.

A339376 Number of partitions of n into an odd number of distinct triangular numbers.

Original entry on oeis.org

0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 1, 0, 1, 0, 2, 0, 1, 1, 0, 1, 1, 1, 0, 3, 0, 1, 1, 2, 0, 1, 2, 1, 3, 0, 2, 1, 2, 1, 1, 2, 2, 3, 1, 1, 3, 2, 0, 4, 3, 2, 3, 2, 2, 2, 3, 2, 4, 2, 3, 2, 3, 4, 4, 4, 1, 5, 4, 2, 3, 5, 3, 6, 4, 2, 6, 4, 3, 5, 6, 5, 5, 5, 5, 5, 4, 5
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 02 2020

Keywords

Examples

			a(28) = 3 because we have [28], [21, 6, 1] and [15, 10, 3].
		

Crossrefs

Programs

  • Mathematica
    nmax = 90; CoefficientList[Series[(1/2) (Product[(1 + x^(k (k + 1)/2)), {k, 1, nmax}] - Product[(1 - x^(k (k + 1)/2)), {k, 1, nmax}]), {x, 0, nmax}], x]

Formula

G.f.: (1/2) * (Product_{k>=1} (1 + x^(k*(k + 1)/2)) - Product_{k>=1} (1 - x^(k*(k + 1)/2))).
a(n) = (A024940(n) - A292518(n)) / 2.

A339417 Number of compositions (ordered partitions) of n into an odd number of triangular numbers.

Original entry on oeis.org

0, 1, 0, 2, 0, 4, 1, 9, 3, 19, 12, 41, 33, 91, 92, 203, 238, 466, 602, 1080, 1493, 2536, 3661, 6001, 8902, 14278, 21554, 34094, 52013, 81602, 125297, 195582, 301475, 469193, 724881, 1126161, 1742206, 2703888, 4186276, 6493192, 10057553, 15594636, 24161364, 37455851
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 03 2020

Keywords

Examples

			a(8) = 3 because we have [6, 1, 1], [1, 6, 1] and [1, 1, 6].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, t) option remember; local r, f, g;
          if n=0 then t else r, f, g:=$0..2; while f<=n
          do r, f, g:= r+b(n-f, 1-t), f+g, g+1 od; r fi
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..50);  # Alois P. Heinz, Dec 03 2020
  • Mathematica
    nmax = 43; CoefficientList[Series[(1/2) (1/(1 - Sum[x^(k (k + 1)/2), {k, 1, nmax}]) - 1/Sum[x^(k (k + 1)/2), {k, 0, nmax}]), {x, 0, nmax}], x]

Formula

G.f.: (1/2) * (1 / (1 - Sum_{k>=1} x^(k*(k + 1)/2)) - 1 / Sum_{k>=0} x^(k*(k + 1)/2)).
a(n) = (A023361(n) - A106507(n)) / 2.
a(n) = -Sum_{k=0..n-1} A023361(k) * A106507(n-k).
Showing 1-4 of 4 results.