cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339606 Decimal expansion of Sum_{k>=0} (zeta(3*k+2)-1).

Original entry on oeis.org

6, 8, 6, 5, 0, 3, 3, 4, 2, 3, 3, 8, 6, 2, 3, 8, 8, 5, 9, 6, 4, 6, 0, 5, 2, 1, 2, 1, 8, 6, 8, 5, 4, 7, 5, 2, 1, 8, 2, 2, 3, 2, 6, 9, 9, 2, 1, 9, 6, 3, 6, 1, 8, 8, 4, 5, 8, 6, 3, 4, 4, 1, 4, 9, 2, 8, 8, 5, 6, 1, 4, 9, 9, 4, 5, 9, 7, 4, 1, 3, 1, 9, 4, 2, 1, 8, 2, 5, 6, 1, 1, 8, 2, 1, 2, 0, 7, 1, 4, 0, 3, 6, 3, 9, 9
Offset: 0

Views

Author

Artur Jasinski, Dec 09 2020

Keywords

Examples

			0.6865033423386238859646...
		

Crossrefs

Programs

  • Maple
    evalf(Re(sum(1/(k^3+1), k=1..infinity)), 120);  # Alois P. Heinz, Dec 12 2020
  • Mathematica
    RealDigits[Chop[N[Sum[Zeta[3 n + 2] - 1, {n, 0, Infinity}], 105]]][[1]]
  • PARI
    suminf(k=0, zeta(3*k+2)-1) \\ Michel Marcus, Dec 09 2020

Formula

Equals Sum_{k>=1} 1/(k^3 + 1).
Equals -1/3 + gamma/3 + (1/3)*Re(Psi(1/2 + i*sqrt(3)/2)) + sqrt(3)*Pi*tanh(sqrt(3)*Pi/2)/6, where Psi is digamma function, gamma is Euler-Mascheroni constant (see A001620), and i=sqrt(-1).
Equals -1/3 + gamma/3 - (1/3)*A339135 + 2*log(2)/9 + sqrt(3)*Pi*tanh(sqrt(3)*Pi/2)/6.
Equals 1 - A339605 - A339604.
Equals 1/2 + Sum_{k>=1} (-1)^(k+1) * (zeta(3*k)-1). - Amiram Eldar, Jan 07 2024