cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339669 Number of Fibonacci divisors of Lucas(n)^2 + 1.

Original entry on oeis.org

2, 2, 3, 1, 3, 2, 3, 2, 5, 1, 5, 2, 4, 2, 5, 1, 5, 2, 4, 2, 6, 1, 6, 2, 4, 2, 6, 1, 6, 2, 4, 2, 6, 1, 7, 2, 5, 2, 6, 1, 6, 2, 4, 2, 7, 1, 7, 2, 5, 2, 7, 1, 6, 2, 5, 2, 7, 1, 6, 2, 4, 2, 8, 1, 9, 2, 5, 2, 6, 1, 6, 2, 4, 2, 7, 1, 9, 2, 6, 2, 7, 1, 7, 2, 5, 2, 7, 1, 6
Offset: 0

Views

Author

Michel Lagneau, Dec 12 2020

Keywords

Comments

Particular attention must be paid to the regularity properties of the number of divisors of Lucas(n)^2 + 1 observed for n < 156, when a(n) = 1 or 2. From this observation, we propose two conjectures verified for n < 156.
Conjecture 1: a(6*n+3) = 1.
Conjecture 2: a(6*n+1) = a(6*n+5) = 2.
The table in the links shows an array where terms are arranged in a table of 12 columns and 13 rows. We see the periods when a(n) = 1 and 2.

Examples

			a(8) = 5 because the divisors of Lucas(8)^2 + 1 = 47^2 + 1 = 2210 are {1, 2, 5, 10, 13, 17, 26, 34, 65, 85, 130, 170, 221, 442, 1105, 2210} with 5 Fibonacci divisors: 1, 2, 5, 13 and 34.
		

Crossrefs

Programs

  • Maple
    with(combinat,fibonacci):nn:=100:F:={}:
    Lucas:=n->2*fibonacci(n-1)+fibonacci(n):
    for k from 0 to nn do:
      F:=F union {fibonacci(k)}:
    od:
       for m from 0 to 90 do:
        l:=Lucas(m)^2+1:d:=numtheory[divisors](l):n0:=nops(d):
        lst:= F intersect d: n1:=nops(lst):printf(`%d, `,n1):
       od:
  • Mathematica
    Array[DivisorSum[LucasL[#]^2 + 1, 1 &, AnyTrue[Sqrt[5 #^2 + 4 {-1, 1}], IntegerQ] &] &, 89, 0] (* Michael De Vlieger, Dec 12 2020 *)
  • PARI
    a(n) = { my(l2 = 5*fibonacci(n)^2 + 4*(-1)^n + 1, k = 1, m = 2, res = 1, g); while(m <= l2, if(l2 % m == 0, res++); g = m; m += k; k = g; ); res } \\ David A. Corneth, Dec 12 2020