A339669 Number of Fibonacci divisors of Lucas(n)^2 + 1.
2, 2, 3, 1, 3, 2, 3, 2, 5, 1, 5, 2, 4, 2, 5, 1, 5, 2, 4, 2, 6, 1, 6, 2, 4, 2, 6, 1, 6, 2, 4, 2, 6, 1, 7, 2, 5, 2, 6, 1, 6, 2, 4, 2, 7, 1, 7, 2, 5, 2, 7, 1, 6, 2, 5, 2, 7, 1, 6, 2, 4, 2, 8, 1, 9, 2, 5, 2, 6, 1, 6, 2, 4, 2, 7, 1, 9, 2, 6, 2, 7, 1, 7, 2, 5, 2, 7, 1, 6
Offset: 0
Keywords
Examples
a(8) = 5 because the divisors of Lucas(8)^2 + 1 = 47^2 + 1 = 2210 are {1, 2, 5, 10, 13, 17, 26, 34, 65, 85, 130, 170, 221, 442, 1105, 2210} with 5 Fibonacci divisors: 1, 2, 5, 13 and 34.
Links
- Antti Karttunen, Table of n, a(n) for n = 0..17800
- Michel Lagneau, Table
Programs
-
Maple
with(combinat,fibonacci):nn:=100:F:={}: Lucas:=n->2*fibonacci(n-1)+fibonacci(n): for k from 0 to nn do: F:=F union {fibonacci(k)}: od: for m from 0 to 90 do: l:=Lucas(m)^2+1:d:=numtheory[divisors](l):n0:=nops(d): lst:= F intersect d: n1:=nops(lst):printf(`%d, `,n1): od:
-
Mathematica
Array[DivisorSum[LucasL[#]^2 + 1, 1 &, AnyTrue[Sqrt[5 #^2 + 4 {-1, 1}], IntegerQ] &] &, 89, 0] (* Michael De Vlieger, Dec 12 2020 *)
-
PARI
a(n) = { my(l2 = 5*fibonacci(n)^2 + 4*(-1)^n + 1, k = 1, m = 2, res = 1, g); while(m <= l2, if(l2 % m == 0, res++); g = m; m += k; k = g; ); res } \\ David A. Corneth, Dec 12 2020
Comments